Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq12i Structured version   Visualization version   GIF version

Theorem opeq12i 4438
 Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 4435 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 708 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523  ⟨cop 4216 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217 This theorem is referenced by:  elxp6  7244  addcompq  9810  mulcompq  9812  addassnq  9818  mulassnq  9819  distrnq  9821  1lt2nq  9833  axi2m1  10018  om2uzrdg  12795  axlowdimlem6  25872  konigsbergvtx  27224  konigsbergiedg  27225  nvop2  27591  nvvop  27592  phop  27801  hhsssh  28254  rngoi  33828  isdrngo1  33885
 Copyright terms: Public domain W3C validator