![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelxp | Structured version Visualization version GIF version |
Description: Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5289 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) | |
2 | vex 3343 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 3343 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth2 5097 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 𝑥 ∧ 𝐵 = 𝑦)) |
5 | eleq1 2827 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) | |
6 | eleq1 2827 | . . . . . . 7 ⊢ (𝐵 = 𝑦 → (𝐵 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) | |
7 | 5, 6 | bi2anan9 953 | . . . . . 6 ⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑦) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
8 | 4, 7 | sylbi 207 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
9 | 8 | biimprcd 240 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) |
10 | 9 | rexlimivv 3174 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
11 | eqid 2760 | . . . 4 ⊢ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉 | |
12 | opeq1 4553 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
13 | 12 | eqeq2d 2770 | . . . . 5 ⊢ (𝑥 = 𝐴 → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉)) |
14 | opeq2 4554 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
15 | 14 | eqeq2d 2770 | . . . . 5 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉)) |
16 | 13, 15 | rspc2ev 3463 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
17 | 11, 16 | mp3an3 1562 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
18 | 10, 17 | impbii 199 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
19 | 1, 18 | bitri 264 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 〈cop 4327 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-opab 4865 df-xp 5272 |
This theorem is referenced by: brxp 5304 opelxpi 5305 opelxp1 5307 opelxp2 5308 otel3xp 5310 opthprc 5324 elxp3 5326 opeliunxp 5327 bropaex12 5349 optocl 5352 xpsspw 5389 xpiindi 5413 opelresg 5557 opelresOLD 5561 restidsing 5616 restidsingOLD 5617 codir 5674 qfto 5675 xpnz 5711 difxp 5716 xpdifid 5720 ssrnres 5730 dfco2 5795 relssdmrn 5817 ressn 5832 elsnxpOLD 5839 opelf 6226 oprab4 6892 resoprab 6922 oprssdm 6981 nssdmovg 6982 ndmovg 6983 elmpt2cl 7042 resiexg 7268 fo1stres 7360 fo2ndres 7361 el2xptp0 7380 dfoprab4 7393 opiota 7397 bropopvvv 7424 bropfvvvvlem 7425 curry1 7438 curry2 7441 xporderlem 7457 fnwelem 7461 mpt2xopxprcov0 7513 mpt2curryd 7565 brecop 8009 brecop2 8010 eceqoveq 8021 xpdom2 8222 mapunen 8296 djuss 8957 dfac5lem2 9157 iunfo 9573 ordpipq 9976 prsrlem1 10105 opelcn 10162 opelreal 10163 elreal2 10165 swrd00 13637 swrdcl 13638 swrd0 13654 fsumcom2 14724 fsumcom2OLD 14725 fprodcom2 14933 fprodcom2OLD 14934 phimullem 15706 imasvscafn 16419 brcic 16679 homarcl2 16906 evlfcl 17083 clatl 17337 matplusgcell 20461 mdetrlin 20630 iscnp2 21265 txuni2 21590 txcls 21629 txcnpi 21633 txcnp 21645 txcnmpt 21649 txdis1cn 21660 txtube 21665 hausdiag 21670 txlm 21673 tx1stc 21675 txkgen 21677 txflf 22031 tmdcn2 22114 tgphaus 22141 qustgplem 22145 fmucndlem 22316 xmeterval 22458 metustexhalf 22582 blval2 22588 metuel2 22591 bcthlem1 23341 ovolfcl 23455 ovoliunlem1 23490 ovolshftlem1 23497 mbfimaopnlem 23641 limccnp2 23875 cxpcn3 24709 fsumvma 25158 lgsquadlem1 25325 lgsquadlem2 25326 ofresid 29774 xppreima2 29780 aciunf1lem 29792 f1od2 29829 smatrcl 30192 smatlem 30193 qtophaus 30233 eulerpartlemgvv 30768 erdszelem10 31510 cvmlift2lem10 31622 cvmlift2lem12 31624 msubff 31755 elmpst 31761 mpstrcl 31766 elmpps 31798 dfso2 31972 fv1stcnv 32006 fv2ndcnv 32007 txpss3v 32312 pprodss4v 32318 dfrdg4 32385 bj-elid3 33416 bj-eldiag2 33421 curf 33718 curunc 33722 heiborlem3 33943 opelresALTV 34373 xrnss3v 34475 inxpxrn 34494 dibopelvalN 36952 dibopelval2 36954 dib1dim 36974 dihopcl 37062 dih1 37095 dih1dimatlem 37138 hdmap1val 37608 pellex 37919 elnonrel 38411 fourierdlem42 40887 etransclem44 41016 ovn0lem 41303 ndmaovg 41788 aoprssdm 41806 ndmaovcl 41807 ndmaovrcl 41808 ndmaovcom 41809 ndmaovass 41810 ndmaovdistr 41811 pfx00 41912 pfx0 41913 sprsymrelfvlem 42268 sprsymrelfolem2 42271 opeliun2xp 42639 |
Copyright terms: Public domain | W3C validator |