MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeluu Structured version   Visualization version   GIF version

Theorem opeluu 4968
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1 𝐴 ∈ V
opeluu.2 𝐵 ∈ V
Assertion
Ref Expression
opeluu (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4 𝐴 ∈ V
21prid1 4329 . . 3 𝐴 ∈ {𝐴, 𝐵}
3 opeluu.2 . . . . 5 𝐵 ∈ V
41, 3opi2 4967 . . . 4 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
5 elunii 4473 . . . 4 (({𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝐶)
64, 5mpan 706 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → {𝐴, 𝐵} ∈ 𝐶)
7 elunii 4473 . . 3 ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ 𝐶) → 𝐴 𝐶)
82, 6, 7sylancr 696 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 𝐶)
93prid2 4330 . . 3 𝐵 ∈ {𝐴, 𝐵}
10 elunii 4473 . . 3 ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ 𝐶) → 𝐵 𝐶)
119, 6, 10sylancr 696 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 𝐶)
128, 11jca 553 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  Vcvv 3231  {cpr 4212  cop 4216   cuni 4468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469
This theorem is referenced by:  asymref  5547  asymref2  5548  wrdexb  13348
  Copyright terms: Public domain W3C validator