![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelrn | Structured version Visualization version GIF version |
Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelrn | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4805 | . 2 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
2 | brelrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | brelrn.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | brelrn 5511 | . 2 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
5 | 1, 4 | sylbir 225 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 Vcvv 3340 〈cop 4327 class class class wbr 4804 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: dfres3 5556 zfrep6 7299 2ndrn 7383 disjen 8282 r0weon 9025 gsum2dlem1 18569 gsum2dlem2 18570 cnfinltrel 33552 iss2 34435 rfovcnvf1od 38800 |
Copyright terms: Public domain | W3C validator |