![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelresALTV | Structured version Visualization version GIF version |
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
opelresALTV | ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5278 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
2 | 1 | elin2 3944 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (〈𝐵, 𝐶〉 ∈ 𝑅 ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × V))) |
3 | elex 3352 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
4 | 3 | biantrud 529 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V))) |
5 | opelxp 5303 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × V) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V)) | |
6 | 4, 5 | syl6rbbr 279 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝐴 × V) ↔ 𝐵 ∈ 𝐴)) |
7 | 6 | anbi1cd 34341 | . 2 ⊢ (𝐶 ∈ 𝑉 → ((〈𝐵, 𝐶〉 ∈ 𝑅 ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × V)) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
8 | 2, 7 | syl5bb 272 | 1 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 Vcvv 3340 〈cop 4327 × cxp 5264 ↾ cres 5268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-opab 4865 df-xp 5272 df-res 5278 |
This theorem is referenced by: brresALTV 34374 |
Copyright terms: Public domain | W3C validator |