Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelresALTV Structured version   Visualization version   GIF version

Theorem opelresALTV 34373
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
opelresALTV (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))

Proof of Theorem opelresALTV
StepHypRef Expression
1 df-res 5278 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21elin2 3944 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)))
3 elex 3352 . . . . 5 (𝐶𝑉𝐶 ∈ V)
43biantrud 529 . . . 4 (𝐶𝑉 → (𝐵𝐴 ↔ (𝐵𝐴𝐶 ∈ V)))
5 opelxp 5303 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ (𝐵𝐴𝐶 ∈ V))
64, 5syl6rbbr 279 . . 3 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ 𝐵𝐴))
76anbi1cd 34341 . 2 (𝐶𝑉 → ((⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
82, 7syl5bb 272 1 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  Vcvv 3340  cop 4327   × cxp 5264  cres 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865  df-xp 5272  df-res 5278
This theorem is referenced by:  brresALTV  34374
  Copyright terms: Public domain W3C validator