![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelreal | Structured version Visualization version GIF version |
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opelreal | ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2748 | . 2 ⊢ 0R = 0R | |
2 | df-r 10109 | . . . 4 ⊢ ℝ = (R × {0R}) | |
3 | 2 | eleq2i 2819 | . . 3 ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 〈𝐴, 0R〉 ∈ (R × {0R})) |
4 | opelxp 5291 | . . 3 ⊢ (〈𝐴, 0R〉 ∈ (R × {0R}) ↔ (𝐴 ∈ R ∧ 0R ∈ {0R})) | |
5 | 0r 10064 | . . . . . 6 ⊢ 0R ∈ R | |
6 | 5 | elexi 3341 | . . . . 5 ⊢ 0R ∈ V |
7 | 6 | elsn 4324 | . . . 4 ⊢ (0R ∈ {0R} ↔ 0R = 0R) |
8 | 7 | anbi2i 732 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R ∈ {0R}) ↔ (𝐴 ∈ R ∧ 0R = 0R)) |
9 | 3, 4, 8 | 3bitri 286 | . 2 ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ (𝐴 ∈ R ∧ 0R = 0R)) |
10 | 1, 9 | mpbiran2 992 | 1 ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 {csn 4309 〈cop 4315 × cxp 5252 Rcnr 9850 0Rc0r 9851 ℝcr 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-omul 7722 df-er 7899 df-ec 7901 df-qs 7905 df-ni 9857 df-pli 9858 df-mi 9859 df-lti 9860 df-plpq 9893 df-mpq 9894 df-ltpq 9895 df-enq 9896 df-nq 9897 df-erq 9898 df-plq 9899 df-mq 9900 df-1nq 9901 df-rq 9902 df-ltnq 9903 df-np 9966 df-1p 9967 df-enr 10040 df-nr 10041 df-0r 10045 df-r 10109 |
This theorem is referenced by: ltresr 10124 ax1cn 10133 axaddrcl 10136 axmulrcl 10138 axrnegex 10146 axrrecex 10147 axcnre 10148 axpre-sup 10153 |
Copyright terms: Public domain | W3C validator |