MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabt Structured version   Visualization version   GIF version

Theorem opelopabt 5137
Description: Closed theorem form of opelopab 5147. (Contributed by NM, 19-Feb-2013.)
Assertion
Ref Expression
opelopabt ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabt
StepHypRef Expression
1 elopab 5133 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 19.26-2 1948 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) ↔ (∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))))
3 prth 596 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝜑𝜓) ∧ (𝜓𝜒))))
4 bitr 747 . . . . . 6 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
53, 4syl6 35 . . . . 5 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
652alimi 1889 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
72, 6sylbir 225 . . 3 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
8 copsex2t 5105 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
97, 8stoic3 1850 . 2 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
101, 9syl5bb 272 1 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wal 1630   = wceq 1632  wex 1853  wcel 2139  cop 4327  {copab 4864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator