MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabsb Structured version   Visualization version   GIF version

Theorem opelopabsb 5014
Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
opelopabsb (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem opelopabsb
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3234 . . . . . . . . . 10 𝑥 ∈ V
2 vex 3234 . . . . . . . . . 10 𝑦 ∈ V
31, 2opnzi 4972 . . . . . . . . 9 𝑥, 𝑦⟩ ≠ ∅
4 simpl 472 . . . . . . . . . . 11 ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∅ = ⟨𝑥, 𝑦⟩)
54eqcomd 2657 . . . . . . . . . 10 ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ⟨𝑥, 𝑦⟩ = ∅)
65necon3ai 2848 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ≠ ∅ → ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
73, 6ax-mp 5 . . . . . . . 8 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
87nex 1771 . . . . . . 7 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
98nex 1771 . . . . . 6 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
10 elopab 5012 . . . . . 6 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
119, 10mtbir 312 . . . . 5 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
12 eleq1 2718 . . . . 5 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1311, 12mtbiri 316 . . . 4 (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
1413necon2ai 2852 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨𝐴, 𝐵⟩ ≠ ∅)
15 opnz 4971 . . 3 (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
1614, 15sylib 208 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝐴 ∈ V ∧ 𝐵 ∈ V))
17 sbcex 3478 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐴 ∈ V)
18 spesbc 3554 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → ∃𝑥[𝐵 / 𝑦]𝜑)
19 sbcex 3478 . . . . 5 ([𝐵 / 𝑦]𝜑𝐵 ∈ V)
2019exlimiv 1898 . . . 4 (∃𝑥[𝐵 / 𝑦]𝜑𝐵 ∈ V)
2118, 20syl 17 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐵 ∈ V)
2217, 21jca 553 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
23 opeq1 4433 . . . . 5 (𝑧 = 𝐴 → ⟨𝑧, 𝑤⟩ = ⟨𝐴, 𝑤⟩)
2423eleq1d 2715 . . . 4 (𝑧 = 𝐴 → (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
25 dfsbcq2 3471 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝑤 / 𝑦]𝜑))
2624, 25bibi12d 334 . . 3 (𝑧 = 𝐴 → ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑤 / 𝑦]𝜑)))
27 opeq2 4434 . . . . 5 (𝑤 = 𝐵 → ⟨𝐴, 𝑤⟩ = ⟨𝐴, 𝐵⟩)
2827eleq1d 2715 . . . 4 (𝑤 = 𝐵 → (⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
29 dfsbcq2 3471 . . . . 5 (𝑤 = 𝐵 → ([𝑤 / 𝑦]𝜑[𝐵 / 𝑦]𝜑))
3029sbcbidv 3523 . . . 4 (𝑤 = 𝐵 → ([𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
3128, 30bibi12d 334 . . 3 (𝑤 = 𝐵 → ((⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)))
32 nfopab1 4752 . . . . . 6 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
3332nfel2 2810 . . . . 5 𝑥𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
34 nfs1v 2465 . . . . 5 𝑥[𝑧 / 𝑥][𝑤 / 𝑦]𝜑
3533, 34nfbi 1873 . . . 4 𝑥(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
36 opeq1 4433 . . . . . 6 (𝑥 = 𝑧 → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
3736eleq1d 2715 . . . . 5 (𝑥 = 𝑧 → (⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
38 sbequ12 2149 . . . . 5 (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
3937, 38bibi12d 334 . . . 4 (𝑥 = 𝑧 → ((⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)))
40 nfopab2 4753 . . . . . . 7 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
4140nfel2 2810 . . . . . 6 𝑦𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
42 nfs1v 2465 . . . . . 6 𝑦[𝑤 / 𝑦]𝜑
4341, 42nfbi 1873 . . . . 5 𝑦(⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑)
44 opeq2 4434 . . . . . . 7 (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
4544eleq1d 2715 . . . . . 6 (𝑦 = 𝑤 → (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
46 sbequ12 2149 . . . . . 6 (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑))
4745, 46bibi12d 334 . . . . 5 (𝑦 = 𝑤 → ((⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) ↔ (⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑)))
48 opabid 5011 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
4943, 47, 48chvar 2298 . . . 4 (⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑)
5035, 39, 49chvar 2298 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
5126, 31, 50vtocl2g 3301 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
5216, 22, 51pm5.21nii 367 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383   = wceq 1523  wex 1744  [wsb 1937  wcel 2030  wne 2823  Vcvv 3231  [wsbc 3468  c0 3948  cop 4216  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746
This theorem is referenced by:  brabsb  5015  opelopabgf  5024  opelopabaf  5028  opelopabf  5029  difopab  5286  isarep1  6015  fmptsnd  6476
  Copyright terms: Public domain W3C validator