MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopab2a Structured version   Visualization version   GIF version

Theorem opelopab2a 5140
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopab2a ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2827 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 eleq1 2827 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝐷))
31, 2bi2anan9 953 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝐶𝐵𝐷)))
4 opelopabga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
53, 4anbi12d 749 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷) ∧ 𝜑) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
65opelopabga 5138 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
76bianabs 960 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cop 4327  {copab 4864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865
This theorem is referenced by:  opelopab2  5146  brab2a  5351  prdsleval  16359  isperp  25827
  Copyright terms: Public domain W3C validator