MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopab Structured version   Visualization version   GIF version

Theorem opelopab 5026
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.)
Hypotheses
Ref Expression
opelopab.1 𝐴 ∈ V
opelopab.2 𝐵 ∈ V
opelopab.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopab.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopab (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opelopab
StepHypRef Expression
1 opelopab.1 . 2 𝐴 ∈ V
2 opelopab.2 . 2 𝐵 ∈ V
3 opelopab.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 opelopab.4 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
53, 4opelopabg 5022 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
61, 2, 5mp2an 708 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  Vcvv 3231  cop 4216  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746
This theorem is referenced by:  opabid2  5284  dfres2  5488  f1oiso  6641  elopabi  7276  xporderlem  7333  cnlnssadj  29067  areacirclem5  33634  dicopelval  36783  dih1dimatlem  36935  pellexlem3  37712  fsovrfovd  38620
  Copyright terms: Public domain W3C validator