Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelco3 Structured version   Visualization version   GIF version

Theorem opelco3 31802
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
Assertion
Ref Expression
opelco3 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))

Proof of Theorem opelco3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-br 4686 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 relco 5671 . . . 4 Rel (𝐶𝐷)
3 brrelex12 5189 . . . 4 ((Rel (𝐶𝐷) ∧ 𝐴(𝐶𝐷)𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
42, 3mpan 706 . . 3 (𝐴(𝐶𝐷)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 snprc 4285 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
6 noel 3952 . . . . . . 7 ¬ 𝐵 ∈ ∅
7 imaeq2 5497 . . . . . . . . . 10 ({𝐴} = ∅ → (𝐷 “ {𝐴}) = (𝐷 “ ∅))
87imaeq2d 5501 . . . . . . . . 9 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = (𝐶 “ (𝐷 “ ∅)))
9 ima0 5516 . . . . . . . . . . 11 (𝐷 “ ∅) = ∅
109imaeq2i 5499 . . . . . . . . . 10 (𝐶 “ (𝐷 “ ∅)) = (𝐶 “ ∅)
11 ima0 5516 . . . . . . . . . 10 (𝐶 “ ∅) = ∅
1210, 11eqtri 2673 . . . . . . . . 9 (𝐶 “ (𝐷 “ ∅)) = ∅
138, 12syl6eq 2701 . . . . . . . 8 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = ∅)
1413eleq2d 2716 . . . . . . 7 ({𝐴} = ∅ → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ 𝐵 ∈ ∅))
156, 14mtbiri 316 . . . . . 6 ({𝐴} = ∅ → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
165, 15sylbi 207 . . . . 5 𝐴 ∈ V → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
1716con4i 113 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐴 ∈ V)
18 elex 3243 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐵 ∈ V)
1917, 18jca 553 . . 3 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
20 df-rex 2947 . . . . 5 (∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵 ↔ ∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵))
21 vex 3234 . . . . . . . . . 10 𝑧 ∈ V
22 elimasng 5526 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
2321, 22mpan2 707 . . . . . . . . 9 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
24 df-br 4686 . . . . . . . . 9 (𝐴𝐷𝑧 ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷)
2523, 24syl6bbr 278 . . . . . . . 8 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2625adantr 480 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2726anbi1d 741 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ (𝐴𝐷𝑧𝑧𝐶𝐵)))
2827exbidv 1890 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
2920, 28syl5rbb 273 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
30 brcog 5321 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
31 elimag 5505 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3231adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3329, 30, 323bitr4d 300 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))))
344, 19, 33pm5.21nii 367 . 2 (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
351, 34bitr3i 266 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wrex 2942  Vcvv 3231  c0 3948  {csn 4210  cop 4216   class class class wbr 4685  cima 5146  ccom 5147  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator