MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opcom Structured version   Visualization version   GIF version

Theorem opcom 4935
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1 𝐴 ∈ V
opcom.2 𝐵 ∈ V
Assertion
Ref Expression
opcom (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3 𝐴 ∈ V
2 opcom.2 . . 3 𝐵 ∈ V
31, 2opth 4915 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝐴 = 𝐵𝐵 = 𝐴))
4 eqcom 2628 . . 3 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi2i 729 . 2 ((𝐴 = 𝐵𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐴 = 𝐵))
6 anidm 675 . 2 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
73, 5, 63bitri 286 1 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  cop 4161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator