![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxp | Structured version Visualization version GIF version |
Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp | ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | 1 | ssopab2i 5032 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | df-xp 5149 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
4 | 2, 3 | sseqtr4i 3671 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2030 ⊆ wss 3607 {copab 4745 × cxp 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-in 3614 df-ss 3621 df-opab 4746 df-xp 5149 |
This theorem is referenced by: brab2a 5228 dmoprabss 6784 ecopovsym 7892 ecopovtrn 7893 ecopover 7894 enqex 9782 lterpq 9830 ltrelpr 9858 enrex 9926 ltrelsr 9927 ltrelre 9993 ltrelxr 10137 rlimpm 14275 dvdszrcl 15032 prdsle 16169 prdsless 16170 sectfval 16458 sectss 16459 ltbval 19519 opsrle 19523 lmfval 21084 isphtpc 22840 bcthlem1 23167 bcthlem5 23171 lgsquadlem1 25150 lgsquadlem2 25151 lgsquadlem3 25152 ishlg 25542 perpln1 25650 perpln2 25651 isperp 25652 iscgra 25746 isinag 25774 isleag 25778 inftmrel 29862 isinftm 29863 metidval 30061 metidss 30062 faeval 30437 filnetlem2 32499 areacirc 33635 lcvfbr 34625 cmtfvalN 34815 cvrfval 34873 dicssdvh 36792 pellexlem3 37712 pellexlem4 37713 pellexlem5 37714 pellex 37716 rfovcnvf1od 38615 fsovrfovd 38620 |
Copyright terms: Public domain | W3C validator |