![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabss | Structured version Visualization version GIF version |
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabss | ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4853 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)} | |
2 | df-br 4793 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
3 | eleq1 2815 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
4 | 3 | biimpar 503 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → 𝑧 ∈ 𝑅) |
5 | 2, 4 | sylan2b 493 | . . . 4 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
6 | 5 | exlimivv 1997 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
7 | 6 | abssi 3806 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)} ⊆ 𝑅 |
8 | 1, 7 | eqsstri 3764 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1620 ∃wex 1841 ∈ wcel 2127 {cab 2734 ⊆ wss 3703 〈cop 4315 class class class wbr 4792 {copab 4852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-in 3710 df-ss 3717 df-br 4793 df-opab 4853 |
This theorem is referenced by: aceq3lem 9104 fullfunc 16738 fthfunc 16739 isfull 16742 isfth 16746 |
Copyright terms: Public domain | W3C validator |