![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabex2 | Structured version Visualization version GIF version |
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
opabex2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opabex2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
opabex2.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
opabex2.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
opabex2 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabex2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | opabex2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 7107 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 573 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
5 | opabex2.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
6 | opabex2.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
7 | 5, 6 | opabssxpd 5476 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
8 | 4, 7 | ssexd 4939 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 Vcvv 3351 {copab 4846 × cxp 5247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-opab 4847 df-xp 5255 df-rel 5256 |
This theorem is referenced by: legval 25700 wksv 26750 rfovcnvfvd 38827 sprsymrelfvlem 42268 |
Copyright terms: Public domain | W3C validator |