![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2nd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndval 7337 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nda 5781 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
5 | 1, 4 | eqtri 2782 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 Vcvv 3340 {csn 4321 〈cop 4327 ∪ cuni 4588 ran crn 5267 ‘cfv 6049 2nd c2nd 7333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fv 6057 df-2nd 7335 |
This theorem is referenced by: op2ndd 7345 op2ndg 7347 2ndval2 7352 fo2ndres 7361 eloprabi 7401 fo2ndf 7453 f1o2ndf1 7454 seqomlem1 7715 seqomlem2 7716 xpmapenlem 8294 fseqenlem2 9058 axdc4lem 9489 iunfo 9573 archnq 10014 om2uzrdg 12969 uzrdgsuci 12973 fsum2dlem 14720 fprod2dlem 14929 ruclem8 15185 ruclem11 15188 eucalglt 15520 idfu2nd 16758 idfucl 16762 cofu2nd 16766 cofucl 16769 xpccatid 17049 prf2nd 17066 curf2ndf 17108 yonedalem22 17139 gaid 17952 2ndcctbss 21480 upxp 21648 uptx 21650 txkgen 21677 cnheiborlem 22974 ovollb2lem 23476 ovolctb 23478 ovoliunlem2 23491 ovolshftlem1 23497 ovolscalem1 23501 ovolicc1 23504 wlkpwwlkf1ouspgr 27009 wlknwwlksnsur 27020 wlkwwlksur 27027 clwlkclwwlkfo 27153 clwlksfoclwwlkOLD 27238 ex-2nd 27634 cnnvs 27865 cnnvnm 27866 h2hsm 28162 h2hnm 28163 hhsssm 28445 hhssnm 28446 aciunf1lem 29792 eulerpartlemgvv 30768 eulerpartlemgh 30770 msubff1 31781 msubvrs 31785 poimirlem17 33757 heiborlem7 33947 heiborlem8 33948 dvhvaddass 36906 dvhlveclem 36917 diblss 36979 pellexlem5 37917 pellex 37919 dvnprodlem1 40682 hoicvr 41286 hoicvrrex 41294 ovn0lem 41303 ovnhoilem1 41339 ovnlecvr2 41348 ovolval5lem2 41391 |
Copyright terms: Public domain | W3C validator |