![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1stb | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 5657 to extract the second member, op1sta 5654 for an alternate version, and op1st 7218 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
op1stb.1 | ⊢ 𝐴 ∈ V |
op1stb.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 4432 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | inteqi 4511 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
5 | snex 4938 | . . . . . 6 ⊢ {𝐴} ∈ V | |
6 | prex 4939 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V | |
7 | 5, 6 | intpr 4542 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
8 | snsspr1 4377 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
9 | df-ss 3621 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
10 | 8, 9 | mpbi 220 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
11 | 7, 10 | eqtri 2673 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
12 | 4, 11 | eqtri 2673 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
13 | 12 | inteqi 4511 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
14 | 1 | intsn 4545 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
15 | 13, 14 | eqtri 2673 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 {csn 4210 {cpr 4212 〈cop 4216 ∩ cint 4507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-int 4508 |
This theorem is referenced by: elreldm 5382 op2ndb 5657 elxp5 7153 1stval2 7227 fundmen 8071 xpsnen 8085 |
Copyright terms: Public domain | W3C validator |