![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 5771 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 5771 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 5794 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 493 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ⊆ wss 3607 Ord word 5760 Oncon0 5761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 |
This theorem is referenced by: oneqmini 5814 onmindif 5853 onint 7037 onnmin 7045 onmindif2 7054 dfom2 7109 ondif2 7627 oaword 7674 oawordeulem 7679 oaf1o 7688 odi 7704 omeulem1 7707 oeeulem 7726 oeeui 7727 nnmword 7758 domtriord 8147 sdomel 8148 onsdominel 8150 ordunifi 8251 cantnfp1lem3 8615 oemapvali 8619 cantnflem1b 8621 cantnflem1 8624 cnfcom3lem 8638 rankr1clem 8721 rankelb 8725 rankval3b 8727 rankr1a 8737 unbndrank 8743 rankxplim3 8782 cardne 8829 carden2b 8831 cardsdomel 8838 carddom2 8841 harcard 8842 domtri2 8853 infxpenlem 8874 alephord 8936 alephord3 8939 alephle 8949 dfac12k 9007 cflim2 9123 cofsmo 9129 cfsmolem 9130 isf32lem5 9217 pwcfsdom 9443 pwfseqlem3 9520 inar1 9635 om2uzlt2i 12790 sltval2 31934 sltres 31940 nosepssdm 31961 nolt02olem 31969 nolt02o 31970 noetalem3 31990 nocvxminlem 32018 onsuct0 32565 onint1 32573 |
Copyright terms: Public domain | W3C validator |