![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontr2 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontr2 | ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 5882 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 5882 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtr2 5917 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | syl2an 495 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2127 ⊆ wss 3703 Ord word 5871 Oncon0 5872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-tr 4893 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-ord 5875 df-on 5876 |
This theorem is referenced by: oeordsuc 7831 oelimcl 7837 oeeui 7839 omopthlem2 7893 omxpenlem 8214 oismo 8598 cantnflem1c 8745 cantnflem1 8747 cantnflem3 8749 rankr1ai 8822 rankxplim 8903 infxpenlem 8997 alephle 9072 pwcfsdom 9568 r1limwun 9721 ontopbas 32704 ontgval 32707 |
Copyright terms: Public domain | W3C validator |