Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucuni3 Structured version   Visualization version   GIF version

Theorem onsucuni3 33552
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
onsucuni3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)

Proof of Theorem onsucuni3
StepHypRef Expression
1 eloni 5875 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
213ad2ant1 1127 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵)
3 orduniorsuc 7181 . . . 4 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
42, 3syl 17 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = 𝐵𝐵 = suc 𝐵))
54orcomd 860 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc 𝐵𝐵 = 𝐵))
6 simp2 1131 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅)
7 df-lim 5870 . . . . . . . 8 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
87biimpri 218 . . . . . . 7 ((Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵) → Lim 𝐵)
983expb 1113 . . . . . 6 ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)) → Lim 𝐵)
109con3i 151 . . . . 5 (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
11103ad2ant3 1129 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
122, 11mpnanrd 33515 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
136, 12mpnanrd 33515 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = 𝐵)
14 orcom 859 . . 3 ((𝐵 = suc 𝐵𝐵 = 𝐵) ↔ (𝐵 = 𝐵𝐵 = suc 𝐵))
15 df-or 837 . . 3 ((𝐵 = 𝐵𝐵 = suc 𝐵) ↔ (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
1614, 15sylbb 209 . 2 ((𝐵 = suc 𝐵𝐵 = 𝐵) → (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
175, 13, 16sylc 65 1 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  c0 4063   cuni 4575  Ord word 5864  Oncon0 5865  Lim wlim 5866  suc csuc 5867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871
This theorem is referenced by:  1oequni2o  33553  rdgsucuni  33554  finxpreclem4  33568
  Copyright terms: Public domain W3C validator