![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuctop | Structured version Visualization version GIF version |
Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.) |
Ref | Expression |
---|---|
onsuctop | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontgsucval 32758 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) | |
2 | suceloni 7179 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | ontopbas 32754 | . . 3 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases) | |
4 | tgcl 20995 | . . 3 ⊢ (suc 𝐴 ∈ TopBases → (topGen‘suc 𝐴) ∈ Top) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) ∈ Top) |
6 | 1, 5 | eqeltrrd 2840 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 Oncon0 5884 suc csuc 5886 ‘cfv 6049 topGenctg 16320 Topctop 20920 TopBasesctb 20971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fv 6057 df-topgen 16326 df-top 20921 df-bases 20972 |
This theorem is referenced by: onsuctopon 32760 ordtop 32762 onsucconni 32763 onsucsuccmpi 32769 |
Copyright terms: Public domain | W3C validator |