MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsssuc Structured version   Visualization version   GIF version

Theorem onsssuc 5851
Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsssuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem onsssuc
StepHypRef Expression
1 eloni 5771 . 2 (𝐵 ∈ On → Ord 𝐵)
2 ordsssuc 5850 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
31, 2sylan2 490 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wss 3607  Ord word 5760  Oncon0 5761  suc csuc 5763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-suc 5767
This theorem is referenced by:  ordsssuc2  5852  onmindif  5853  tfindsg  7102  dfom2  7109  findsg  7135  ondif2  7627  oeeui  7727  cantnflem1  8624  rankr1bg  8704  rankr1c  8722  cofsmo  9129  cfsmolem  9130  cfcof  9134  fin1a2lem9  9268  alephreg  9442  winainflem  9553  onsuct0  32565  onint1  32573
  Copyright terms: Public domain W3C validator