![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssr1 | Structured version Visualization version GIF version |
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
onssr1 | ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 8667 | . . . . . . . . . 10 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 477 | . . . . . . . . 9 ⊢ Lim dom 𝑅1 |
3 | limord 5822 | . . . . . . . . 9 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
4 | ordtr1 5805 | . . . . . . . . 9 ⊢ (Ord dom 𝑅1 → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)) | |
5 | 2, 3, 4 | mp2b 10 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1) |
6 | 5 | ancoms 468 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝑅1) |
7 | rankonidlem 8729 | . . . . . . 7 ⊢ (𝑥 ∈ dom 𝑅1 → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) |
9 | 8 | simprd 478 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (rank‘𝑥) = 𝑥) |
10 | simpr 476 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | 9, 10 | eqeltrd 2730 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴) |
12 | 8 | simpld 474 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
13 | simpl 472 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ dom 𝑅1) | |
14 | rankr1ag 8703 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) | |
15 | 12, 13, 14 | syl2anc 694 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
16 | 11, 15 | mpbird 247 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘𝐴)) |
17 | 16 | ex 449 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘𝐴))) |
18 | 17 | ssrdv 3642 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ∪ cuni 4468 dom cdm 5143 “ cima 5146 Ord word 5760 Oncon0 5761 Lim wlim 5762 Fun wfun 5920 ‘cfv 5926 𝑅1cr1 8663 rankcrnk 8664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-r1 8665 df-rank 8666 |
This theorem is referenced by: rankr1id 8763 ackbij2 9103 wunom 9580 r1limwun 9596 inar1 9635 r1tskina 9642 |
Copyright terms: Public domain | W3C validator |