MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssr1 Structured version   Visualization version   GIF version

Theorem onssr1 8732
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
onssr1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))

Proof of Theorem onssr1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 8667 . . . . . . . . . 10 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 477 . . . . . . . . 9 Lim dom 𝑅1
3 limord 5822 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordtr1 5805 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
52, 3, 4mp2b 10 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
65ancoms 468 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
7 rankonidlem 8729 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
86, 7syl 17 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
98simprd 478 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) = 𝑥)
10 simpr 476 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
119, 10eqeltrd 2730 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) ∈ 𝐴)
128simpld 474 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 (𝑅1 “ On))
13 simpl 472 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
14 rankr1ag 8703 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1512, 13, 14syl2anc 694 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1611, 15mpbird 247 . . 3 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
1716ex 449 . 2 (𝐴 ∈ dom 𝑅1 → (𝑥𝐴𝑥 ∈ (𝑅1𝐴)))
1817ssrdv 3642 1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wss 3607   cuni 4468  dom cdm 5143  cima 5146  Ord word 5760  Oncon0 5761  Lim wlim 5762  Fun wfun 5920  cfv 5926  𝑅1cr1 8663  rankcrnk 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665  df-rank 8666
This theorem is referenced by:  rankr1id  8763  ackbij2  9103  wunom  9580  r1limwun  9596  inar1  9635  r1tskina  9642
  Copyright terms: Public domain W3C validator