![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssnum | Structured version Visualization version GIF version |
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.) |
Ref | Expression |
---|---|
onssnum | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7101 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | ssorduni 7131 | . . . 4 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | elong 5874 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) | |
4 | 3 | biimpar 463 | . . . 4 ⊢ ((∪ 𝐴 ∈ V ∧ Ord ∪ 𝐴) → ∪ 𝐴 ∈ On) |
5 | 1, 2, 4 | syl2an 575 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → ∪ 𝐴 ∈ On) |
6 | suceloni 7159 | . . 3 ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ On) | |
7 | onenon 8974 | . . 3 ⊢ (suc ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ dom card) | |
8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → suc ∪ 𝐴 ∈ dom card) |
9 | onsucuni 7174 | . . 3 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
10 | 9 | adantl 467 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ⊆ suc ∪ 𝐴) |
11 | ssnum 9061 | . 2 ⊢ ((suc ∪ 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc ∪ 𝐴) → 𝐴 ∈ dom card) | |
12 | 8, 10, 11 | syl2anc 565 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 Vcvv 3349 ⊆ wss 3721 ∪ cuni 4572 dom cdm 5249 Ord word 5865 Oncon0 5866 suc csuc 5868 cardccrd 8960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-wrecs 7558 df-recs 7620 df-er 7895 df-en 8109 df-dom 8110 df-card 8964 |
This theorem is referenced by: dfac12lem3 9168 cfeq0 9279 cfsuc 9280 cff1 9281 cfflb 9282 cflim2 9286 cfss 9288 cfslb 9289 |
Copyright terms: Public domain | W3C validator |