![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsseli | Structured version Visualization version GIF version |
Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
on.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onsseli | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | on.2 | . 2 ⊢ 𝐵 ∈ On | |
3 | onsseleq 5927 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 Oncon0 5885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-tr 4906 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-ord 5888 df-on 5889 |
This theorem is referenced by: cardom 9023 tskcard 9816 |
Copyright terms: Public domain | W3C validator |