![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsdominel | Structured version Visualization version GIF version |
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
onsdominel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontri1 5918 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | ancoms 468 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
3 | inex1g 4953 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐶) ∈ V) | |
4 | ssrin 3981 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶)) | |
5 | ssdomg 8169 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐶) ∈ V → ((𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) | |
6 | 3, 4, 5 | syl2im 40 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) |
7 | domnsym 8253 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶) → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) | |
8 | 6, 7 | syl6 35 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
10 | 2, 9 | sylbird 250 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
11 | 10 | con4d 114 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵)) |
12 | 11 | 3impia 1110 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 class class class wbr 4804 Oncon0 5884 ≼ cdom 8121 ≺ csdm 8122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 |
This theorem is referenced by: fin23lem27 9362 |
Copyright terms: Public domain | W3C validator |