![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onpsstopbas | Structured version Visualization version GIF version |
Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
Ref | Expression |
---|---|
onpsstopbas | ⊢ On ⊊ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsstopbas 32553 | . 2 ⊢ On ⊆ TopBases | |
2 | indistop 20854 | . . . 4 ⊢ {∅, {{∅}}} ∈ Top | |
3 | topbas 20824 | . . . 4 ⊢ ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, {{∅}}} ∈ TopBases |
5 | snex 4938 | . . . . . 6 ⊢ {{∅}} ∈ V | |
6 | 5 | prid2 4330 | . . . . 5 ⊢ {{∅}} ∈ {∅, {{∅}}} |
7 | snsn0non 5884 | . . . . 5 ⊢ ¬ {{∅}} ∈ On | |
8 | mth8 158 | . . . . 5 ⊢ ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))) | |
9 | 6, 7, 8 | mp2 9 | . . . 4 ⊢ ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On) |
10 | onelon 5786 | . . . . 5 ⊢ (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On) | |
11 | 10 | ex 449 | . . . 4 ⊢ ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)) |
12 | 9, 11 | mto 188 | . . 3 ⊢ ¬ {∅, {{∅}}} ∈ On |
13 | 4, 12 | pm3.2i 470 | . 2 ⊢ ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) |
14 | ssnelpss 3751 | . 2 ⊢ (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases)) | |
15 | 1, 13, 14 | mp2 9 | 1 ⊢ On ⊊ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2030 ⊆ wss 3607 ⊊ wpss 3608 ∅c0 3948 {csn 4210 {cpr 4212 Oncon0 5761 Topctop 20746 TopBasesctb 20797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-ord 5764 df-on 5765 df-iota 5889 df-fun 5928 df-fv 5934 df-top 20747 df-topon 20764 df-bases 20798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |