Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onpsstopbas Structured version   Visualization version   GIF version

Theorem onpsstopbas 32554
Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.)
Assertion
Ref Expression
onpsstopbas On ⊊ TopBases

Proof of Theorem onpsstopbas
StepHypRef Expression
1 onsstopbas 32553 . 2 On ⊆ TopBases
2 indistop 20854 . . . 4 {∅, {{∅}}} ∈ Top
3 topbas 20824 . . . 4 ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases)
42, 3ax-mp 5 . . 3 {∅, {{∅}}} ∈ TopBases
5 snex 4938 . . . . . 6 {{∅}} ∈ V
65prid2 4330 . . . . 5 {{∅}} ∈ {∅, {{∅}}}
7 snsn0non 5884 . . . . 5 ¬ {{∅}} ∈ On
8 mth8 158 . . . . 5 ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)))
96, 7, 8mp2 9 . . . 4 ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)
10 onelon 5786 . . . . 5 (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On)
1110ex 449 . . . 4 ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))
129, 11mto 188 . . 3 ¬ {∅, {{∅}}} ∈ On
134, 12pm3.2i 470 . 2 ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On)
14 ssnelpss 3751 . 2 (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases))
151, 13, 14mp2 9 1 On ⊊ TopBases
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 2030  wss 3607  wpss 3608  c0 3948  {csn 4210  {cpr 4212  Oncon0 5761  Topctop 20746  TopBasesctb 20797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fv 5934  df-top 20747  df-topon 20764  df-bases 20798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator