Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminex Structured version   Visualization version   GIF version

Theorem onminex 7158
 Description: If a wff is true for an ordinal number, there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
onminex.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
onminex (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem onminex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3836 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 rabn0 4105 . . . . 5 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
32biimpri 218 . . . 4 (∃𝑥 ∈ On 𝜑 → {𝑥 ∈ On ∣ 𝜑} ≠ ∅)
4 oninton 7151 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
51, 3, 4sylancr 575 . . 3 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
6 onminesb 7149 . . 3 (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
7 onss 7141 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝜑} ∈ On → {𝑥 ∈ On ∣ 𝜑} ⊆ On)
85, 7syl 17 . . . . . 6 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ⊆ On)
98sseld 3751 . . . . 5 (∃𝑥 ∈ On 𝜑 → (𝑦 {𝑥 ∈ On ∣ 𝜑} → 𝑦 ∈ On))
10 onminex.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1110onnminsb 7155 . . . . 5 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
129, 11syli 39 . . . 4 (∃𝑥 ∈ On 𝜑 → (𝑦 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
1312ralrimiv 3114 . . 3 (∃𝑥 ∈ On 𝜑 → ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)
14 dfsbcq2 3590 . . . . 5 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → ([𝑧 / 𝑥]𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑))
15 raleq 3287 . . . . 5 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → (∀𝑦𝑧 ¬ 𝜓 ↔ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓))
1614, 15anbi12d 616 . . . 4 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → (([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓) ↔ ([ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)))
1716rspcev 3460 . . 3 (( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ ([ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
185, 6, 13, 17syl12anc 1474 . 2 (∃𝑥 ∈ On 𝜑 → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
19 nfv 1995 . . 3 𝑧(𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓)
20 nfs1v 2274 . . . 4 𝑥[𝑧 / 𝑥]𝜑
21 nfv 1995 . . . 4 𝑥𝑦𝑧 ¬ 𝜓
2220, 21nfan 1980 . . 3 𝑥([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓)
23 sbequ12 2267 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
24 raleq 3287 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑥 ¬ 𝜓 ↔ ∀𝑦𝑧 ¬ 𝜓))
2523, 24anbi12d 616 . . 3 (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓)))
2619, 22, 25cbvrex 3317 . 2 (∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓) ↔ ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
2718, 26sylibr 224 1 (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631  [wsb 2049   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  ∃wrex 3062  {crab 3065  [wsbc 3587   ⊆ wss 3723  ∅c0 4063  ∩ cint 4612  Oncon0 5865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7100 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-br 4788  df-opab 4848  df-tr 4888  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-ord 5868  df-on 5869 This theorem is referenced by:  tz7.49  7697  omeulem1  7820  zorn2lem7  9530
 Copyright terms: Public domain W3C validator