MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintss Structured version   Visualization version   GIF version

Theorem onintss 5937
Description: If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypothesis
Ref Expression
onintss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
onintss (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem onintss
StepHypRef Expression
1 onintss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21intminss 4656 . 2 ((𝐴 ∈ On ∧ 𝜓) → {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)
32ex 449 1 (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2140  {crab 3055  wss 3716   cint 4628  Oncon0 5885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-rab 3060  df-v 3343  df-in 3723  df-ss 3730  df-int 4629
This theorem is referenced by:  rankval3b  8865  cardne  9002  noextenddif  32149
  Copyright terms: Public domain W3C validator