![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onint0 | Structured version Visualization version GIF version |
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
onint0 | ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4942 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | eleq1 2827 | . . . . . . 7 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ ∅ ∈ V)) | |
3 | 1, 2 | mpbiri 248 | . . . . . 6 ⊢ (∩ 𝐴 = ∅ → ∩ 𝐴 ∈ V) |
4 | intex 4969 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 224 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → 𝐴 ≠ ∅) |
6 | onint 7161 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
7 | 5, 6 | sylan2 492 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∩ 𝐴 ∈ 𝐴) |
8 | eleq1 2827 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) | |
9 | 8 | adantl 473 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
10 | 7, 9 | mpbid 222 | . . 3 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∅ ∈ 𝐴) |
11 | 10 | ex 449 | . 2 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ → ∅ ∈ 𝐴)) |
12 | int0el 4660 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) | |
13 | 11, 12 | impbid1 215 | 1 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 ∩ cint 4627 Oncon0 5884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-tr 4905 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-ord 5887 df-on 5888 |
This theorem is referenced by: cfeq0 9290 |
Copyright terms: Public domain | W3C validator |