MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onint0 Structured version   Visualization version   GIF version

Theorem onint0 7162
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
onint0 (𝐴 ⊆ On → ( 𝐴 = ∅ ↔ ∅ ∈ 𝐴))

Proof of Theorem onint0
StepHypRef Expression
1 0ex 4942 . . . . . . 7 ∅ ∈ V
2 eleq1 2827 . . . . . . 7 ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 248 . . . . . 6 ( 𝐴 = ∅ → 𝐴 ∈ V)
4 intex 4969 . . . . . 6 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
53, 4sylibr 224 . . . . 5 ( 𝐴 = ∅ → 𝐴 ≠ ∅)
6 onint 7161 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
75, 6sylan2 492 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 = ∅) → 𝐴𝐴)
8 eleq1 2827 . . . . 5 ( 𝐴 = ∅ → ( 𝐴𝐴 ↔ ∅ ∈ 𝐴))
98adantl 473 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 = ∅) → ( 𝐴𝐴 ↔ ∅ ∈ 𝐴))
107, 9mpbid 222 . . 3 ((𝐴 ⊆ On ∧ 𝐴 = ∅) → ∅ ∈ 𝐴)
1110ex 449 . 2 (𝐴 ⊆ On → ( 𝐴 = ∅ → ∅ ∈ 𝐴))
12 int0el 4660 . 2 (∅ ∈ 𝐴 𝐴 = ∅)
1311, 12impbid1 215 1 (𝐴 ⊆ On → ( 𝐴 = ∅ ↔ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  wss 3715  c0 4058   cint 4627  Oncon0 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-tr 4905  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-ord 5887  df-on 5888
This theorem is referenced by:  cfeq0  9290
  Copyright terms: Public domain W3C validator