Proof of Theorem onfununi
Step | Hyp | Ref
| Expression |
1 | | ssorduni 7142 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ On → Ord ∪ 𝑆) |
2 | 1 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) ∧ 𝑆 ≠ ∅) → Ord ∪ 𝑆) |
3 | | nelneq 2855 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑆 ∧ ¬ ∪
𝑆 ∈ 𝑆) → ¬ 𝑥 = ∪ 𝑆) |
4 | | elssuni 4611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑆 → 𝑥 ⊆ ∪ 𝑆) |
5 | 4 | adantl 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → 𝑥 ⊆ ∪ 𝑆) |
6 | | ssel 3730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆 ⊆ On → (𝑥 ∈ 𝑆 → 𝑥 ∈ On)) |
7 | | eloni 5886 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ On → Ord 𝑥) |
8 | 6, 7 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑆 ⊆ On → (𝑥 ∈ 𝑆 → Ord 𝑥)) |
9 | 8 | imp 444 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → Ord 𝑥) |
10 | | ordsseleq 5905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Ord
𝑥 ∧ Ord ∪ 𝑆)
→ (𝑥 ⊆ ∪ 𝑆
↔ (𝑥 ∈ ∪ 𝑆
∨ 𝑥 = ∪ 𝑆))) |
11 | 9, 1, 10 | syl2an 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ On) → (𝑥 ⊆ ∪ 𝑆 ↔ (𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆))) |
12 | 11 | anabss1 890 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → (𝑥 ⊆ ∪ 𝑆 ↔ (𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆))) |
13 | 5, 12 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆)) |
14 | 13 | ord 391 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → (¬ 𝑥 ∈ ∪ 𝑆 → 𝑥 = ∪ 𝑆)) |
15 | 14 | con1d 139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → (¬ 𝑥 = ∪ 𝑆 → 𝑥 ∈ ∪ 𝑆)) |
16 | 3, 15 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ∧ ¬ ∪
𝑆 ∈ 𝑆) → 𝑥 ∈ ∪ 𝑆)) |
17 | 16 | exp4b 633 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ⊆ On → (𝑥 ∈ 𝑆 → (𝑥 ∈ 𝑆 → (¬ ∪
𝑆 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆)))) |
18 | 17 | pm2.43d 53 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ On → (𝑥 ∈ 𝑆 → (¬ ∪
𝑆 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆))) |
19 | 18 | com23 86 |
. . . . . . . . . . . 12
⊢ (𝑆 ⊆ On → (¬ ∪ 𝑆
∈ 𝑆 → (𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆))) |
20 | 19 | imp 444 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) → (𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆)) |
21 | 20 | ssrdv 3742 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) → 𝑆 ⊆ ∪ 𝑆) |
22 | | ssn0 4111 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ∪ 𝑆
∧ 𝑆 ≠ ∅)
→ ∪ 𝑆 ≠ ∅) |
23 | 21, 22 | sylan 489 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) ∧ 𝑆 ≠ ∅) → ∪ 𝑆
≠ ∅) |
24 | 21 | unissd 4606 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) → ∪ 𝑆
⊆ ∪ ∪ 𝑆) |
25 | | orduniss 5974 |
. . . . . . . . . . . . 13
⊢ (Ord
∪ 𝑆 → ∪ ∪ 𝑆
⊆ ∪ 𝑆) |
26 | 1, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑆 ⊆ On → ∪ ∪ 𝑆 ⊆ ∪ 𝑆) |
27 | 26 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) → ∪ ∪ 𝑆 ⊆ ∪ 𝑆) |
28 | 24, 27 | eqssd 3753 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) → ∪ 𝑆 =
∪ ∪ 𝑆) |
29 | 28 | adantr 472 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 =
∪ ∪ 𝑆) |
30 | | df-lim 5881 |
. . . . . . . . 9
⊢ (Lim
∪ 𝑆 ↔ (Ord ∪
𝑆 ∧ ∪ 𝑆
≠ ∅ ∧ ∪ 𝑆 = ∪ ∪ 𝑆)) |
31 | 2, 23, 29, 30 | syl3anbrc 1426 |
. . . . . . . 8
⊢ (((𝑆 ⊆ On ∧ ¬ ∪ 𝑆
∈ 𝑆) ∧ 𝑆 ≠ ∅) → Lim ∪ 𝑆) |
32 | 31 | an32s 881 |
. . . . . . 7
⊢ (((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ ∪ 𝑆
∈ 𝑆) → Lim ∪ 𝑆) |
33 | 32 | 3adantl1 1169 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ ∪ 𝑆
∈ 𝑆) → Lim ∪ 𝑆) |
34 | | ssonuni 7143 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑇 → (𝑆 ⊆ On → ∪ 𝑆
∈ On)) |
35 | | limeq 5888 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∪
𝑆 → (Lim 𝑦 ↔ Lim ∪ 𝑆)) |
36 | | fveq2 6344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∪
𝑆 → (𝐹‘𝑦) = (𝐹‘∪ 𝑆)) |
37 | | iuneq1 4678 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∪
𝑆 → ∪ 𝑥 ∈ 𝑦 (𝐹‘𝑥) = ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥)) |
38 | 36, 37 | eqeq12d 2767 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∪
𝑆 → ((𝐹‘𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐹‘𝑥) ↔ (𝐹‘∪ 𝑆) = ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥))) |
39 | 35, 38 | imbi12d 333 |
. . . . . . . . . . 11
⊢ (𝑦 = ∪
𝑆 → ((Lim 𝑦 → (𝐹‘𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐹‘𝑥)) ↔ (Lim ∪
𝑆 → (𝐹‘∪ 𝑆) = ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥)))) |
40 | | onfununi.1 |
. . . . . . . . . . 11
⊢ (Lim
𝑦 → (𝐹‘𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐹‘𝑥)) |
41 | 39, 40 | vtoclg 3398 |
. . . . . . . . . 10
⊢ (∪ 𝑆
∈ On → (Lim ∪ 𝑆 → (𝐹‘∪ 𝑆) = ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥))) |
42 | 34, 41 | syl6 35 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝑇 → (𝑆 ⊆ On → (Lim ∪ 𝑆
→ (𝐹‘∪ 𝑆) =
∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥)))) |
43 | 42 | imp 444 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On) → (Lim ∪ 𝑆
→ (𝐹‘∪ 𝑆) =
∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥))) |
44 | 43 | 3adant3 1126 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (Lim ∪ 𝑆
→ (𝐹‘∪ 𝑆) =
∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥))) |
45 | 44 | adantr 472 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ ∪ 𝑆
∈ 𝑆) → (Lim ∪ 𝑆
→ (𝐹‘∪ 𝑆) =
∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥))) |
46 | 33, 45 | mpd 15 |
. . . . 5
⊢ (((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ ∪ 𝑆
∈ 𝑆) → (𝐹‘∪ 𝑆) =
∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥)) |
47 | | eluni2 4584 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑆
↔ ∃𝑦 ∈
𝑆 𝑥 ∈ 𝑦) |
48 | | ssel 3730 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ⊆ On → (𝑦 ∈ 𝑆 → 𝑦 ∈ On)) |
49 | 48 | anim1d 589 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ⊆ On → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦) → (𝑦 ∈ On ∧ 𝑥 ∈ 𝑦))) |
50 | | onelon 5901 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) |
51 | 49, 50 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ On → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On)) |
52 | 48 | adantrd 485 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ On → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦) → 𝑦 ∈ On)) |
53 | | eloni 5886 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → Ord 𝑦) |
54 | 48, 53 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ⊆ On → (𝑦 ∈ 𝑆 → Ord 𝑦)) |
55 | | ordelss 5892 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Ord
𝑦 ∧ 𝑥 ∈ 𝑦) → 𝑥 ⊆ 𝑦) |
56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ⊆ On → ((Ord 𝑦 ∧ 𝑥 ∈ 𝑦) → 𝑥 ⊆ 𝑦)) |
57 | 54, 56 | syland 499 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ On → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦) → 𝑥 ⊆ 𝑦)) |
58 | 51, 52, 57 | 3jcad 1123 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ On → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦) → (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦))) |
59 | | onfununi.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦)) |
60 | 58, 59 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ⊆ On → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
61 | 60 | expd 451 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ On → (𝑦 ∈ 𝑆 → (𝑥 ∈ 𝑦 → (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
62 | 61 | reximdvai 3145 |
. . . . . . . . . . . 12
⊢ (𝑆 ⊆ On → (∃𝑦 ∈ 𝑆 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝑆 (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
63 | 47, 62 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ On → (𝑥 ∈ ∪ 𝑆
→ ∃𝑦 ∈
𝑆 (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
64 | | ssiun 4706 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑆 (𝐹‘𝑥) ⊆ (𝐹‘𝑦) → (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝑆 (𝐹‘𝑦)) |
65 | 63, 64 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ On → (𝑥 ∈ ∪ 𝑆
→ (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦))) |
66 | 65 | ralrimiv 3095 |
. . . . . . . . 9
⊢ (𝑆 ⊆ On → ∀𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝑆 (𝐹‘𝑦)) |
67 | | iunss 4705 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝑆 (𝐹‘𝑦) ↔ ∀𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝑆 (𝐹‘𝑦)) |
68 | 66, 67 | sylibr 224 |
. . . . . . . 8
⊢ (𝑆 ⊆ On → ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝑆 (𝐹‘𝑦)) |
69 | | fveq2 6344 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
70 | 69 | cbviunv 4703 |
. . . . . . . 8
⊢ ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥) |
71 | 68, 70 | syl6sseq 3784 |
. . . . . . 7
⊢ (𝑆 ⊆ On → ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑥 ∈ 𝑆 (𝐹‘𝑥)) |
72 | 71 | 3ad2ant2 1128 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑥 ∈ 𝑆 (𝐹‘𝑥)) |
73 | 72 | adantr 472 |
. . . . 5
⊢ (((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ ∪ 𝑆
∈ 𝑆) → ∪ 𝑥 ∈ ∪ 𝑆(𝐹‘𝑥) ⊆ ∪
𝑥 ∈ 𝑆 (𝐹‘𝑥)) |
74 | 46, 73 | eqsstrd 3772 |
. . . 4
⊢ (((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ ∪ 𝑆
∈ 𝑆) → (𝐹‘∪ 𝑆)
⊆ ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥)) |
75 | 74 | ex 449 |
. . 3
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (¬ ∪ 𝑆
∈ 𝑆 → (𝐹‘∪ 𝑆)
⊆ ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥))) |
76 | | fveq2 6344 |
. . . 4
⊢ (𝑥 = ∪
𝑆 → (𝐹‘𝑥) = (𝐹‘∪ 𝑆)) |
77 | 76 | ssiun2s 4708 |
. . 3
⊢ (∪ 𝑆
∈ 𝑆 → (𝐹‘∪ 𝑆)
⊆ ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥)) |
78 | 75, 77 | pm2.61d2 172 |
. 2
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹‘∪ 𝑆) ⊆ ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥)) |
79 | 34 | imp 444 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On) → ∪ 𝑆
∈ On) |
80 | 79 | 3adant3 1126 |
. . . . 5
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑆
∈ On) |
81 | 6 | 3ad2ant2 1128 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥 ∈ 𝑆 → 𝑥 ∈ On)) |
82 | 4 | a1i 11 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥 ∈ 𝑆 → 𝑥 ⊆ ∪ 𝑆)) |
83 | 81, 82 | jcad 556 |
. . . . 5
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥 ∈ 𝑆 → (𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆))) |
84 | | sseq2 3760 |
. . . . . . . 8
⊢ (𝑦 = ∪
𝑆 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ∪ 𝑆)) |
85 | 84 | anbi2d 742 |
. . . . . . 7
⊢ (𝑦 = ∪
𝑆 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆))) |
86 | 36 | sseq2d 3766 |
. . . . . . 7
⊢ (𝑦 = ∪
𝑆 → ((𝐹‘𝑥) ⊆ (𝐹‘𝑦) ↔ (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆))) |
87 | 85, 86 | imbi12d 333 |
. . . . . 6
⊢ (𝑦 = ∪
𝑆 → (((𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆) → (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆)))) |
88 | 59 | 3com12 1117 |
. . . . . . 7
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦)) |
89 | 88 | 3expib 1116 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
90 | 87, 89 | vtoclga 3404 |
. . . . 5
⊢ (∪ 𝑆
∈ On → ((𝑥 ∈
On ∧ 𝑥 ⊆ ∪ 𝑆)
→ (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆))) |
91 | 80, 83, 90 | sylsyld 61 |
. . . 4
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥 ∈ 𝑆 → (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆))) |
92 | 91 | ralrimiv 3095 |
. . 3
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆)) |
93 | | iunss 4705 |
. . 3
⊢ (∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆)) |
94 | 92, 93 | sylibr 224 |
. 2
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑆)) |
95 | 78, 94 | eqssd 3753 |
1
⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥)) |