Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5VD Structured version   Visualization version   GIF version

Theorem onfrALTlem5VD 38643
Description: Virtual deduction proof of onfrALTlem5 38278. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 38278 is onfrALTlem5VD 38643 without virtual deductions and was automatically derived from onfrALTlem5VD 38643.
 1:: ⊢ 𝑎 ∈ V 2:1: ⊢ (𝑎 ∩ 𝑥) ∈ V 3:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 ∩ 𝑥) = ∅) 4:3: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎 ∩ 𝑥) = ∅) 5:: ⊢ ((𝑎 ∩ 𝑥) ≠ ∅ ↔ ¬ (𝑎 ∩ 𝑥 ) = ∅) 6:4,5: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 ∩ 𝑥) ≠ ∅) 7:2: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅) 8:: ⊢ (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) 9:8: ⊢ ∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) 10:2,9: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅) 11:7,10: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) 12:6,11: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎 ∩ 𝑥) ≠ ∅) 13:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥 ) ↔ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥)) 14:12,13: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)) 15:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅)) 16:15,14: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)) 17:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ( ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦) 18:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 = (𝑎 ∩ 𝑥) 19:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦 = 𝑦 20:18,19: ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦) = ((𝑎 ∩ 𝑥) ∩ 𝑦) 21:17,20: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = (( 𝑎 ∩ 𝑥) ∩ 𝑦) 22:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅ ↔ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌ ∅) 23:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ = ∅ 24:21,23: ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 25:22,24: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 26:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ↔ 𝑦 ∈ (𝑎 ∩ 𝑥)) 27:25,26: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [ (𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ (( 𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 28:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅)) 29:27,28: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 30:29: ⊢ ∀𝑦([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 31:30: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 32:: ⊢ (∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ )) 33:31,32: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 34:2: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦) = ∅)) 35:33,34: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅) 36:: ⊢ (∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦 (𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 37:36: ⊢ ∀𝑏(∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 38:2,37: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 39:35,38: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 40:16,39: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 41:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)) qed:40,41: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥 )((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5VD ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑎,𝑏,𝑦   𝑥,𝑏,𝑦

Proof of Theorem onfrALTlem5VD
StepHypRef Expression
1 vex 3193 . . . 4 𝑎 ∈ V
21inex1 4769 . . 3 (𝑎𝑥) ∈ V
3 sbcimg 3464 . . 3 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅)))
42, 3e0a 38520 . 2 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅))
5 sbcangOLD 38260 . . . . 5 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)))
62, 5e0a 38520 . . . 4 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
7 sseq1 3611 . . . . . . 7 (𝑏 = (𝑎𝑥) → (𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
87sbcieg 3455 . . . . . 6 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
92, 8e0a 38520 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
10 sbcng 3463 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅ ↔ ¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅))
1110bicomd 213 . . . . . . . 8 ((𝑎𝑥) ∈ V → (¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅))
122, 11e0a 38520 . . . . . . 7 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
13 df-ne 2791 . . . . . . . . 9 (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
1413ax-gen 1719 . . . . . . . 8 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
15 sbcbi 38270 . . . . . . . 8 ((𝑎𝑥) ∈ V → (∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) → ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)))
162, 14, 15e00 38516 . . . . . . 7 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
1712, 16bitr4i 267 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
18 eqsbc3 3462 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅))
192, 18e0a 38520 . . . . . . . 8 ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅)
2019notbii 310 . . . . . . 7 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
21 df-ne 2791 . . . . . . 7 ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥) = ∅)
2220, 21bitr4i 267 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
2317, 22bitr3i 266 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (𝑎𝑥) ≠ ∅)
249, 23anbi12i 732 . . . 4 (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
256, 24bitri 264 . . 3 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
26 df-rex 2914 . . . . . 6 (∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
2726ax-gen 1719 . . . . 5 𝑏(∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
28 sbcbi 38270 . . . . 5 ((𝑎𝑥) ∈ V → (∀𝑏(∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅)) → ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))))
292, 27, 28e00 38516 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
30 sbcexgOLD 38274 . . . . . . 7 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅)))
3130bicomd 213 . . . . . 6 ((𝑎𝑥) ∈ V → (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅)))
322, 31e0a 38520 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
33 sbcangOLD 38260 . . . . . . . . . 10 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅)))
342, 33e0a 38520 . . . . . . . . 9 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
35 sbcel2gv 3483 . . . . . . . . . . 11 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥)))
362, 35e0a 38520 . . . . . . . . . 10 ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥))
37 sbceqg 3962 . . . . . . . . . . . 12 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅))
382, 37e0a 38520 . . . . . . . . . . 11 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅)
39 csbingOLD 38576 . . . . . . . . . . . . . 14 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦))
402, 39e0a 38520 . . . . . . . . . . . . 13 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
41 csbvarg 3981 . . . . . . . . . . . . . . 15 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥))
422, 41e0a 38520 . . . . . . . . . . . . . 14 (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
43 csbconstg 3532 . . . . . . . . . . . . . . 15 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑦 = 𝑦)
442, 43e0a 38520 . . . . . . . . . . . . . 14 (𝑎𝑥) / 𝑏𝑦 = 𝑦
4542, 44ineq12i 3796 . . . . . . . . . . . . 13 ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
4640, 45eqtri 2643 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
47 csbconstg 3532 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏∅ = ∅)
482, 47e0a 38520 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏∅ = ∅
4946, 48eqeq12i 2635 . . . . . . . . . . 11 ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
5038, 49bitri 264 . . . . . . . . . 10 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
5136, 50anbi12i 732 . . . . . . . . 9 (([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
5234, 51bitri 264 . . . . . . . 8 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
5352ax-gen 1719 . . . . . . 7 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
54 exbi 1770 . . . . . . 7 (∀𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)) → (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)))
5553, 54e0a 38520 . . . . . 6 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
56 df-rex 2914 . . . . . 6 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
5755, 56bitr4i 267 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
5832, 57bitr3i 266 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
5929, 58bitri 264 . . 3 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
6025, 59imbi12i 340 . 2 (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
614, 60bitri 264 1 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2909  Vcvv 3190  [wsbc 3422  ⦋csb 3519   ∩ cin 3559   ⊆ wss 3560  ∅c0 3897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-in 3567  df-ss 3574 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator