![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version |
Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8029 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | isnumi 8810 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
3 | 1, 2 | mpdan 703 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ≈ cen 7994 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-en 7998 df-card 8803 |
This theorem is referenced by: oncardval 8819 oncardid 8820 cardnn 8827 iscard 8839 carduni 8845 nnsdomel 8854 harsdom 8859 pm54.43lem 8863 infxpenlem 8874 infxpidm2 8878 onssnum 8901 alephnbtwn 8932 alephnbtwn2 8933 alephordilem1 8934 alephord2 8937 alephsdom 8947 cardaleph 8950 infenaleph 8952 alephinit 8956 iunfictbso 8975 ficardun2 9063 pwsdompw 9064 infunsdom1 9073 ackbij2 9103 cfflb 9119 sdom2en01 9162 fin23lem22 9187 iunctb 9434 alephadd 9437 alephmul 9438 alephexp1 9439 alephsuc3 9440 canthp1lem2 9513 pwfseqlem4a 9521 pwfseqlem4 9522 pwfseqlem5 9523 gchaleph 9531 gchaleph2 9532 hargch 9533 cygctb 18339 ttac 37920 numinfctb 37990 isnumbasgrplem2 37991 isnumbasabl 37993 |
Copyright terms: Public domain | W3C validator |