![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onelon | Structured version Visualization version GIF version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 5771 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelon 5785 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | sylan 487 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 Ord word 5760 Oncon0 5761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 |
This theorem is referenced by: oneli 5873 ssorduni 7027 unon 7073 tfindsg2 7103 dfom2 7109 ordom 7116 onfununi 7483 onnseq 7486 dfrecs3 7514 tz7.48-2 7582 tz7.49 7585 oalim 7657 omlim 7658 oelim 7659 oaordi 7671 oalimcl 7685 oaass 7686 omordi 7691 omlimcl 7703 odi 7704 omass 7705 omeulem1 7707 omeulem2 7708 omopth2 7709 oewordri 7717 oeordsuc 7719 oelimcl 7725 oeeui 7727 oaabs2 7770 omabs 7772 omxpenlem 8102 hartogs 8490 card2on 8500 cantnfle 8606 cantnflt 8607 cantnfp1lem2 8614 cantnfp1lem3 8615 cantnfp1 8616 oemapvali 8619 cantnflem1b 8621 cantnflem1c 8622 cantnflem1d 8623 cantnflem1 8624 cantnflem2 8625 cantnflem3 8626 cantnflem4 8627 cantnf 8628 cnfcomlem 8634 cnfcom3lem 8638 cnfcom3 8639 r1ordg 8679 r1val3 8739 tskwe 8814 iscard 8839 cardmin2 8862 infxpenlem 8874 infxpenc2lem2 8881 alephordi 8935 alephord2i 8938 alephle 8949 cardaleph 8950 cfub 9109 cfsmolem 9130 zorn2lem5 9360 zorn2lem6 9361 ttukeylem6 9374 ttukeylem7 9375 ondomon 9423 cardmin 9424 alephval2 9432 alephreg 9442 smobeth 9446 winainflem 9553 inar1 9635 inatsk 9638 dfrdg2 31825 sltval2 31934 sltres 31940 nosepeq 31960 nosupno 31974 nosupres 31978 nosupbnd1lem1 31979 nosupbnd2lem1 31986 nosupbnd2 31987 dfrdg4 32183 ontopbas 32552 onpsstopbas 32554 onint1 32573 |
Copyright terms: Public domain | W3C validator |