MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomen Structured version   Visualization version   GIF version

Theorem ondomen 9064
Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ondomen ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem ondomen
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4791 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
21rspcev 3460 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑥 ∈ On 𝐵𝑥)
3 ac10ct 9061 . . 3 (∃𝑥 ∈ On 𝐵𝑥 → ∃𝑟 𝑟 We 𝐵)
42, 3syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑟 𝑟 We 𝐵)
5 ween 9062 . 2 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
64, 5sylibr 224 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wex 1852  wcel 2145  wrex 3062   class class class wbr 4787   We wwe 5208  dom cdm 5250  Oncon0 5865  cdom 8111  cardccrd 8965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-wrecs 7563  df-recs 7625  df-en 8114  df-dom 8115  df-card 8969
This theorem is referenced by:  numdom  9065  alephnbtwn2  9099  alephsucdom  9106  fictb  9273  cfslb2n  9296  gchaleph2  9700  hargch  9701  inawinalem  9717  rankcf  9805  tskuni  9811  1stcrestlem  21476  2ndcctbss  21479  2ndcomap  21482  2ndcsep  21483  tx1stc  21674  tx2ndc  21675  met2ndci  22547
  Copyright terms: Public domain W3C validator