![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ondif2 | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
ondif2 | ⊢ (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3617 | . 2 ⊢ (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2𝑜)) | |
2 | 1on 7612 | . . . . 5 ⊢ 1𝑜 ∈ On | |
3 | ontri1 5795 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜 ↔ ¬ 1𝑜 ∈ 𝐴)) | |
4 | onsssuc 5851 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜 ↔ 𝐴 ∈ suc 1𝑜)) | |
5 | df-2o 7606 | . . . . . . . 8 ⊢ 2𝑜 = suc 1𝑜 | |
6 | 5 | eleq2i 2722 | . . . . . . 7 ⊢ (𝐴 ∈ 2𝑜 ↔ 𝐴 ∈ suc 1𝑜) |
7 | 4, 6 | syl6bbr 278 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜 ↔ 𝐴 ∈ 2𝑜)) |
8 | 3, 7 | bitr3d 270 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (¬ 1𝑜 ∈ 𝐴 ↔ 𝐴 ∈ 2𝑜)) |
9 | 2, 8 | mpan2 707 | . . . 4 ⊢ (𝐴 ∈ On → (¬ 1𝑜 ∈ 𝐴 ↔ 𝐴 ∈ 2𝑜)) |
10 | 9 | con1bid 344 | . . 3 ⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ 2𝑜 ↔ 1𝑜 ∈ 𝐴)) |
11 | 10 | pm5.32i 670 | . 2 ⊢ ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜 ∈ 𝐴)) |
12 | 1, 11 | bitri 264 | 1 ⊢ (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∖ cdif 3604 ⊆ wss 3607 Oncon0 5761 suc csuc 5763 1𝑜c1o 7598 2𝑜c2o 7599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-suc 5767 df-1o 7605 df-2o 7606 |
This theorem is referenced by: dif20el 7630 oeordi 7712 oewordi 7716 oaabs2 7770 omabs 7772 cnfcom3clem 8640 infxpenc2lem1 8880 |
Copyright terms: Public domain | W3C validator |