MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oncard Structured version   Visualization version   GIF version

Theorem oncard 8824
Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
oncard (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem oncard
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
2 fveq2 6229 . . . . 5 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
3 cardidm 8823 . . . . 5 (card‘(card‘𝑥)) = (card‘𝑥)
42, 3syl6eq 2701 . . . 4 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥))
51, 4eqtr4d 2688 . . 3 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
65exlimiv 1898 . 2 (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
7 fvex 6239 . . . 4 (card‘𝐴) ∈ V
8 eleq1 2718 . . . 4 (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V))
97, 8mpbiri 248 . . 3 (𝐴 = (card‘𝐴) → 𝐴 ∈ V)
10 fveq2 6229 . . . . 5 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1110eqeq2d 2661 . . . 4 (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)))
1211spcegv 3325 . . 3 (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)))
139, 12mpcom 38 . 2 (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))
146, 13impbii 199 1 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wex 1744  wcel 2030  Vcvv 3231  cfv 5926  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-card 8803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator