![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on0eqel | Structured version Visualization version GIF version |
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
Ref | Expression |
---|---|
on0eqel | ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4116 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | 0elon 5921 | . . . 4 ⊢ ∅ ∈ On | |
3 | onsseleq 5908 | . . . 4 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) | |
4 | 2, 3 | mpan 670 | . . 3 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) |
5 | 1, 4 | mpbii 223 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴)) |
6 | eqcom 2778 | . . . 4 ⊢ (∅ = 𝐴 ↔ 𝐴 = ∅) | |
7 | 6 | orbi2i 898 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴 ∨ 𝐴 = ∅)) |
8 | orcom 859 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ 𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
9 | 7, 8 | bitri 264 | . 2 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
10 | 5, 9 | sylib 208 | 1 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 836 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ∅c0 4063 Oncon0 5866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-tr 4887 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-ord 5869 df-on 5870 |
This theorem is referenced by: snsn0non 5989 onxpdisj 5990 omabs 7881 cnfcom3lem 8764 |
Copyright terms: Public domain | W3C validator |