MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omv Structured version   Visualization version   GIF version

Theorem omv 7637
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . 5 (𝑦 = 𝐴 → (𝑥 +𝑜 𝑦) = (𝑥 +𝑜 𝐴))
21mpteq2dv 4778 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)))
3 rdgeq1 7552 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅))
42, 3syl 17 . . 3 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅))
54fveq1d 6231 . 2 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝑧))
6 fveq2 6229 . 2 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
7 df-omul 7610 . 2 ·𝑜 = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅)‘𝑧))
8 fvex 6239 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵) ∈ V
95, 6, 7, 8ovmpt2 6838 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  c0 3948  cmpt 4762  Oncon0 5761  cfv 5926  (class class class)co 6690  reccrdg 7550   +𝑜 coa 7602   ·𝑜 comu 7603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-omul 7610
This theorem is referenced by:  om0  7642  omsuc  7651  onmsuc  7654  omlim  7658
  Copyright terms: Public domain W3C validator