![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omon | Structured version Visualization version GIF version |
Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
omon | ⊢ (ω ∈ On ∨ ω = On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7221 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7135 | . 2 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (ω ∈ On ∨ ω = On) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 836 = wceq 1631 ∈ wcel 2145 Ord word 5865 Oncon0 5866 ωcom 7212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-tr 4887 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-om 7213 |
This theorem is referenced by: omelon2 7224 infensuc 8294 elhf2 32619 |
Copyright terms: Public domain | W3C validator |