MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omoe Structured version   Visualization version   GIF version

Theorem omoe 15311
Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))

Proof of Theorem omoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 15288 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 15288 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 953 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 3246 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 11622 . . . . . . . . 9 2 ∈ ℤ
6 zsubcl 11632 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎𝑏) ∈ ℤ)
7 dvdsmul1 15226 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝑎𝑏) ∈ ℤ) → 2 ∥ (2 · (𝑎𝑏)))
85, 6, 7sylancr 698 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · (𝑎𝑏)))
9 zcn 11595 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
10 zcn 11595 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
11 2cn 11304 . . . . . . . . . . . 12 2 ∈ ℂ
12 mulcl 10233 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1311, 12mpan 708 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
14 mulcl 10233 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1511, 14mpan 708 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
16 ax-1cn 10207 . . . . . . . . . . . 12 1 ∈ ℂ
17 pnpcan2 10534 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = ((2 · 𝑎) − (2 · 𝑏)))
1816, 17mp3an3 1562 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = ((2 · 𝑎) − (2 · 𝑏)))
1913, 15, 18syl2an 495 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = ((2 · 𝑎) − (2 · 𝑏)))
20 subdi 10676 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
2111, 20mp3an1 1560 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
2219, 21eqtr4d 2798 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = (2 · (𝑎𝑏)))
239, 10, 22syl2an 495 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = (2 · (𝑎𝑏)))
248, 23breqtrrd 4833 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)))
25 oveq12 6824 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) = (𝐴𝐵))
2625breq2d 4817 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) − ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴𝐵)))
2724, 26syl5ibcom 235 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴𝐵)))
2827rexlimivv 3175 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴𝐵))
294, 28sylbir 225 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴𝐵))
303, 29syl6bi 243 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴𝐵)))
3130imp 444 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
3231an4s 904 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2140  wrex 3052   class class class wbr 4805  (class class class)co 6815  cc 10147  1c1 10150   + caddc 10152   · cmul 10154  cmin 10479  2c2 11283  cz 11590  cdvds 15203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-dvds 15204
This theorem is referenced by:  oddprm  15738  pythagtriplem13  15755  gausslemma2dlem1a  25311  lgsquad2lem1  25330  lgsquad3  25333  jm2.22  38083  jm2.23  38084
  Copyright terms: Public domain W3C validator