![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndaddr | Structured version Visualization version GIF version |
Description: In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndadd.1 | ⊢ ≤ = (le‘𝑀) |
omndadd.2 | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
omndaddr | ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑍 + 𝑋) ≤ (𝑍 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 ⊢ (oppg‘𝑀) = (oppg‘𝑀) | |
2 | omndadd.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | 1, 2 | oppgbas 17902 | . . 3 ⊢ 𝐵 = (Base‘(oppg‘𝑀)) |
4 | omndadd.1 | . . . 4 ⊢ ≤ = (le‘𝑀) | |
5 | 1, 4 | oppgle 29883 | . . 3 ⊢ ≤ = (le‘(oppg‘𝑀)) |
6 | eqid 2724 | . . 3 ⊢ (+g‘(oppg‘𝑀)) = (+g‘(oppg‘𝑀)) | |
7 | 3, 5, 6 | omndadd 29936 | . 2 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘(oppg‘𝑀))𝑍) ≤ (𝑌(+g‘(oppg‘𝑀))𝑍)) |
8 | omndadd.2 | . . 3 ⊢ + = (+g‘𝑀) | |
9 | 8, 1, 6 | oppgplus 17900 | . 2 ⊢ (𝑋(+g‘(oppg‘𝑀))𝑍) = (𝑍 + 𝑋) |
10 | 8, 1, 6 | oppgplus 17900 | . 2 ⊢ (𝑌(+g‘(oppg‘𝑀))𝑍) = (𝑍 + 𝑌) |
11 | 7, 9, 10 | 3brtr3g 4793 | 1 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑍 + 𝑋) ≤ (𝑍 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 +gcplusg 16064 lecple 16071 oppgcoppg 17896 oMndcomnd 29927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-tpos 7472 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-dec 11607 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-plusg 16077 df-ple 16084 df-oppg 17897 df-omnd 29929 |
This theorem is referenced by: omndadd2rd 29939 |
Copyright terms: Public domain | W3C validator |