![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndadd.1 | ⊢ ≤ = (le‘𝑀) |
omndadd.2 | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
omndadd | ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | omndadd.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 30041 | . . . 4 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
5 | 4 | simp3bi 1141 | . . 3 ⊢ (𝑀 ∈ oMnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
6 | breq1 4789 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏)) | |
7 | oveq1 6800 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐)) | |
8 | 7 | breq1d 4796 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑎 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑏 + 𝑐))) |
9 | 6, 8 | imbi12d 333 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)))) |
10 | breq2 4790 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌)) | |
11 | oveq1 6800 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐)) | |
12 | 11 | breq2d 4798 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑋 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑌 + 𝑐))) |
13 | 10, 12 | imbi12d 333 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)))) |
14 | oveq2 6801 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍)) | |
15 | oveq2 6801 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍)) | |
16 | 14, 15 | breq12d 4799 | . . . . 5 ⊢ (𝑐 = 𝑍 → ((𝑋 + 𝑐) ≤ (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
17 | 16 | imbi2d 329 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
18 | 9, 13, 17 | rspc3v 3475 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
19 | 5, 18 | mpan9 496 | . 2 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
20 | 19 | 3impia 1109 | 1 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 +gcplusg 16149 lecple 16156 Tosetctos 17241 Mndcmnd 17502 oMndcomnd 30037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-omnd 30039 |
This theorem is referenced by: omndaddr 30047 omndadd2d 30048 omndadd2rd 30049 submomnd 30050 omndmul2 30052 omndmul3 30053 ogrpinvOLD 30055 ogrpinv0le 30056 ogrpsub 30057 ogrpaddlt 30058 orngsqr 30144 ornglmulle 30145 orngrmulle 30146 |
Copyright terms: Public domain | W3C validator |