![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > omlsii | Structured version Visualization version GIF version |
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsi.1 | ⊢ 𝐴 ∈ Cℋ |
omlsi.2 | ⊢ 𝐵 ∈ Sℋ |
omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 |
omlsi.4 | ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ |
Ref | Expression |
---|---|
omlsii | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsi.3 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | omlsi.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
3 | omlsi.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | sheli 28405 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
5 | 2, 4 | pjhthlem2 28585 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧)) |
6 | eqeq1 2774 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧))) | |
7 | eleq1 2837 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 ∈ 𝐴 ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 333 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → ((𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
9 | oveq1 6799 | . . . . . . . . . 10 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (𝑦 +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧)) | |
10 | 9 | eqeq2d 2780 | . . . . . . . . 9 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧))) |
11 | 10 | imbi1d 330 | . . . . . . . 8 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
12 | oveq2 6800 | . . . . . . . . . 10 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ))) | |
13 | 12 | eqeq2d 2780 | . . . . . . . . 9 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)))) |
14 | 13 | imbi1d 330 | . . . . . . . 8 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
15 | 2 | chshii 28418 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ |
16 | omlsi.4 | . . . . . . . . 9 ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ | |
17 | sh0 28407 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐵 |
19 | 18 | elimel 4287 | . . . . . . . . 9 ⊢ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐵 |
20 | ch0 28419 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴) | |
21 | 2, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐴 |
22 | 21 | elimel 4287 | . . . . . . . . 9 ⊢ if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) ∈ 𝐴 |
23 | shocsh 28477 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
24 | 15, 23 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (⊥‘𝐴) ∈ Sℋ |
25 | sh0 28407 | . . . . . . . . . . 11 ⊢ ((⊥‘𝐴) ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ (⊥‘𝐴) |
27 | 26 | elimel 4287 | . . . . . . . . 9 ⊢ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) ∈ (⊥‘𝐴) |
28 | 15, 3, 1, 16, 19, 22, 27 | omlsilem 28595 | . . . . . . . 8 ⊢ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) |
29 | 8, 11, 14, 28 | dedth3h 4278 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
30 | 29 | 3expia 1113 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴))) |
31 | 30 | rexlimdv 3177 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
32 | 31 | rexlimdva 3178 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
33 | 5, 32 | mpd 15 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) |
34 | 33 | ssriv 3754 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
35 | 1, 34 | eqssi 3766 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 ∩ cin 3720 ⊆ wss 3721 ifcif 4223 ‘cfv 6031 (class class class)co 6792 +ℎ cva 28111 0ℎc0v 28115 Sℋ csh 28119 Cℋ cch 28120 ⊥cort 28121 0ℋc0h 28126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cc 9458 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 ax-hilex 28190 ax-hfvadd 28191 ax-hvcom 28192 ax-hvass 28193 ax-hv0cl 28194 ax-hvaddid 28195 ax-hfvmul 28196 ax-hvmulid 28197 ax-hvmulass 28198 ax-hvdistr1 28199 ax-hvdistr2 28200 ax-hvmul0 28201 ax-hfi 28270 ax-his1 28273 ax-his2 28274 ax-his3 28275 ax-his4 28276 ax-hcompl 28393 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-omul 7717 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-acn 8967 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ico 12385 df-icc 12386 df-fz 12533 df-fl 12800 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-rlim 14427 df-rest 16290 df-topgen 16311 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-top 20918 df-topon 20935 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lm 21253 df-haus 21339 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-cfil 23271 df-cau 23272 df-cmet 23273 df-grpo 27681 df-gid 27682 df-ginv 27683 df-gdiv 27684 df-ablo 27733 df-vc 27748 df-nv 27781 df-va 27784 df-ba 27785 df-sm 27786 df-0v 27787 df-vs 27788 df-nmcv 27789 df-ims 27790 df-ssp 27911 df-ph 28002 df-cbn 28053 df-hnorm 28159 df-hba 28160 df-hvsub 28162 df-hlim 28163 df-hcau 28164 df-sh 28398 df-ch 28412 df-oc 28443 df-ch0 28444 |
This theorem is referenced by: omlsi 28597 ococi 28598 qlaxr3i 28829 hatomistici 29555 |
Copyright terms: Public domain | W3C validator |