![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version |
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2771 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2771 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2771 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2771 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isoml 35047 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
7 | 6 | simplbi 485 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∀wral 3061 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 lecple 16156 occoc 16157 joincjn 17152 meetcmee 17153 OLcol 34983 OMLcoml 34984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-oml 34988 |
This theorem is referenced by: omlop 35050 omllat 35051 omllaw3 35054 omllaw4 35055 cmtcomlemN 35057 cmtbr2N 35062 cmtbr3N 35063 omlfh1N 35067 omlfh3N 35068 omlspjN 35070 hlol 35170 |
Copyright terms: Public domain | W3C validator |