![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw3 | Structured version Visualization version GIF version |
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 28635 analog.) (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
omllaw3.b | ⊢ 𝐵 = (Base‘𝐾) |
omllaw3.l | ⊢ ≤ = (le‘𝐾) |
omllaw3.m | ⊢ ∧ = (meet‘𝐾) |
omllaw3.o | ⊢ ⊥ = (oc‘𝐾) |
omllaw3.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
omllaw3 | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6804 | . . . . . 6 ⊢ ((𝑌 ∧ ( ⊥ ‘𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) | |
2 | 1 | adantl 467 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) |
3 | omlol 35049 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
4 | omllaw3.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
5 | eqid 2771 | . . . . . . . . 9 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | omllaw3.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
7 | 4, 5, 6 | olj01 35034 | . . . . . . . 8 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
8 | 3, 7 | sylan 569 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
9 | 8 | 3adant3 1126 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
10 | 9 | adantr 466 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
11 | 2, 10 | eqtr2d 2806 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
12 | 11 | adantrl 695 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
13 | omllaw3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
14 | omllaw3.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
15 | omllaw3.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
16 | 4, 13, 5, 14, 15 | omllaw 35052 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))))) |
17 | 16 | imp 393 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
18 | 17 | adantrr 696 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
19 | 12, 18 | eqtr4d 2808 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = 𝑌) |
20 | 19 | ex 397 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 lecple 16156 occoc 16157 joincjn 17152 meetcmee 17153 0.cp0 17245 OLcol 34983 OMLcoml 34984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-preset 17136 df-poset 17154 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-lat 17254 df-oposet 34985 df-ol 34987 df-oml 34988 |
This theorem is referenced by: omlfh1N 35067 atlatmstc 35128 |
Copyright terms: Public domain | W3C validator |