Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh3N Structured version   Visualization version   GIF version

Theorem omlfh3N 35068
Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N 35067. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh3N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh3N
StepHypRef Expression
1 omlfh1.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 eqid 2771 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
3 omlfh1.c . . . . . . 7 𝐶 = (cm‘𝐾)
41, 2, 3cmt4N 35061 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌)))
543adant3r3 1199 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌)))
61, 2, 3cmt4N 35061 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)))
763adant3r2 1198 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)))
85, 7anbi12d 616 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑋𝐶𝑍) ↔ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))))
9 simpl 468 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
10 omlop 35050 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
1110adantr 466 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
12 simpr1 1233 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
131, 2opoccl 35003 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1411, 12, 13syl2anc 573 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
15 simpr2 1235 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
161, 2opoccl 35003 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
1711, 15, 16syl2anc 573 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
18 simpr3 1237 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
191, 2opoccl 35003 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
2011, 18, 19syl2anc 573 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
2114, 17, 203jca 1122 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵))
22 omlfh1.j . . . . . . . 8 = (join‘𝐾)
23 omlfh1.m . . . . . . . 8 = (meet‘𝐾)
241, 22, 23, 3omlfh1N 35067 . . . . . . 7 ((𝐾 ∈ OML ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
2524fveq2d 6337 . . . . . 6 ((𝐾 ∈ OML ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
26253exp 1112 . . . . 5 (𝐾 ∈ OML → ((((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))))
279, 21, 26sylc 65 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
288, 27sylbid 230 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑋𝐶𝑍) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
29283impia 1109 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
30 omlol 35049 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ OL)
3130adantr 466 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
32 omllat 35051 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
3332adantr 466 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
341, 22latjcl 17259 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
3533, 17, 20, 34syl3anc 1476 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
361, 22, 23, 2oldmm2 35027 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
3731, 12, 35, 36syl3anc 1476 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
381, 22, 23, 2oldmj4 35033 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
3931, 15, 18, 38syl3anc 1476 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
4039oveq2d 6812 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (𝑌 𝑍)))
4137, 40eqtr2d 2806 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
42413adant3 1126 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
431, 23latmcl 17260 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
4433, 14, 17, 43syl3anc 1476 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
451, 23latmcl 17260 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
4633, 14, 20, 45syl3anc 1476 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
471, 22, 23, 2oldmj1 35030 . . . . 5 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
4831, 44, 46, 47syl3anc 1476 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
491, 22, 23, 2oldmm4 35029 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
5031, 12, 15, 49syl3anc 1476 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
511, 22, 23, 2oldmm4 35029 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 𝑍))
5231, 12, 18, 51syl3anc 1476 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 𝑍))
5350, 52oveq12d 6814 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 𝑌) (𝑋 𝑍)))
5448, 53eqtr2d 2806 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
55543adant3 1126 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
5629, 42, 553eqtr4d 2815 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  occoc 16157  joincjn 17152  meetcmee 17153  Latclat 17253  OPcops 34981  cmccmtN 34982  OLcol 34983  OMLcoml 34984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-oposet 34985  df-cmtN 34986  df-ol 34987  df-oml 34988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator