MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeu Structured version   Visualization version   GIF version

Theorem omeu 7710
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeu ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem omeu
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeulem1 7707 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
2 opex 4962 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
32isseti 3240 . . . . . . . 8 𝑧 𝑧 = ⟨𝑥, 𝑦
4 19.41v 1917 . . . . . . . 8 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
53, 4mpbiran 973 . . . . . . 7 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
65rexbii 3070 . . . . . 6 (∃𝑦𝐴𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
7 rexcom4 3256 . . . . . 6 (∃𝑦𝐴𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
86, 7bitr3i 266 . . . . 5 (∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵 ↔ ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
98rexbii 3070 . . . 4 (∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵 ↔ ∃𝑥 ∈ On ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
10 rexcom4 3256 . . . 4 (∃𝑥 ∈ On ∃𝑧𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
119, 10bitri 264 . . 3 (∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵 ↔ ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
121, 11sylib 208 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
13 simp2rl 1150 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑧 = ⟨𝑥, 𝑦⟩)
14 simp3rl 1154 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑡 = ⟨𝑟, 𝑠⟩)
15 simp2rr 1151 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)
16 simp3rr 1155 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)
1715, 16eqtr4d 2688 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = ((𝐴 ·𝑜 𝑟) +𝑜 𝑠))
18 simp11 1111 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝐴 ∈ On)
19 simp13 1113 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝐴 ≠ ∅)
20 simp2ll 1148 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑥 ∈ On)
21 simp2lr 1149 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑦𝐴)
22 simp3ll 1152 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑟 ∈ On)
23 simp3lr 1153 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑠𝐴)
24 omopth2 7709 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑟 ∈ On ∧ 𝑠𝐴)) → (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) ↔ (𝑥 = 𝑟𝑦 = 𝑠)))
2518, 19, 20, 21, 22, 23, 24syl222anc 1382 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) ↔ (𝑥 = 𝑟𝑦 = 𝑠)))
2617, 25mpbid 222 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → (𝑥 = 𝑟𝑦 = 𝑠))
27 opeq12 4435 . . . . . . . . . . . . 13 ((𝑥 = 𝑟𝑦 = 𝑠) → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
2914, 28eqtr4d 2688 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑡 = ⟨𝑥, 𝑦⟩)
3013, 29eqtr4d 2688 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) ∧ ((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))) → 𝑧 = 𝑡)
31303expia 1286 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))) → (((𝑟 ∈ On ∧ 𝑠𝐴) ∧ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)) → 𝑧 = 𝑡))
3231exp4b 631 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) → 𝑧 = 𝑡))))
3332expd 451 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝐴) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) → 𝑧 = 𝑡)))))
3433rexlimdvv 3066 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) → 𝑧 = 𝑡))))
3534imp 444 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → ((𝑟 ∈ On ∧ 𝑠𝐴) → ((𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) → 𝑧 = 𝑡)))
3635rexlimdvv 3066 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)) → (∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) → 𝑧 = 𝑡))
3736expimpd 628 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)) → 𝑧 = 𝑡))
3837alrimivv 1896 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∀𝑧𝑡((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)) → 𝑧 = 𝑡))
39 opeq1 4433 . . . . . . 7 (𝑥 = 𝑟 → ⟨𝑥, 𝑦⟩ = ⟨𝑟, 𝑦⟩)
4039eqeq2d 2661 . . . . . 6 (𝑥 = 𝑟 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑟, 𝑦⟩))
41 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑟 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑟))
4241oveq1d 6705 . . . . . . 7 (𝑥 = 𝑟 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = ((𝐴 ·𝑜 𝑟) +𝑜 𝑦))
4342eqeq1d 2653 . . . . . 6 (𝑥 = 𝑟 → (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵 ↔ ((𝐴 ·𝑜 𝑟) +𝑜 𝑦) = 𝐵))
4440, 43anbi12d 747 . . . . 5 (𝑥 = 𝑟 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ (𝑧 = ⟨𝑟, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑦) = 𝐵)))
45 opeq2 4434 . . . . . . 7 (𝑦 = 𝑠 → ⟨𝑟, 𝑦⟩ = ⟨𝑟, 𝑠⟩)
4645eqeq2d 2661 . . . . . 6 (𝑦 = 𝑠 → (𝑧 = ⟨𝑟, 𝑦⟩ ↔ 𝑧 = ⟨𝑟, 𝑠⟩))
47 oveq2 6698 . . . . . . 7 (𝑦 = 𝑠 → ((𝐴 ·𝑜 𝑟) +𝑜 𝑦) = ((𝐴 ·𝑜 𝑟) +𝑜 𝑠))
4847eqeq1d 2653 . . . . . 6 (𝑦 = 𝑠 → (((𝐴 ·𝑜 𝑟) +𝑜 𝑦) = 𝐵 ↔ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))
4946, 48anbi12d 747 . . . . 5 (𝑦 = 𝑠 → ((𝑧 = ⟨𝑟, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑦) = 𝐵) ↔ (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)))
5044, 49cbvrex2v 3210 . . . 4 (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵))
51 eqeq1 2655 . . . . . 6 (𝑧 = 𝑡 → (𝑧 = ⟨𝑟, 𝑠⟩ ↔ 𝑡 = ⟨𝑟, 𝑠⟩))
5251anbi1d 741 . . . . 5 (𝑧 = 𝑡 → ((𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) ↔ (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)))
53522rexbidv 3086 . . . 4 (𝑧 = 𝑡 → (∃𝑟 ∈ On ∃𝑠𝐴 (𝑧 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)))
5450, 53syl5bb 272 . . 3 (𝑧 = 𝑡 → (∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)))
5554eu4 2547 . 2 (∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ↔ (∃𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ∧ ∀𝑧𝑡((∃𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵) ∧ ∃𝑟 ∈ On ∃𝑠𝐴 (𝑡 = ⟨𝑟, 𝑠⟩ ∧ ((𝐴 ·𝑜 𝑟) +𝑜 𝑠) = 𝐵)) → 𝑧 = 𝑡)))
5612, 38, 55sylanbrc 699 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wal 1521   = wceq 1523  wex 1744  wcel 2030  ∃!weu 2498  wne 2823  wrex 2942  c0 3948  cop 4216  Oncon0 5761  (class class class)co 6690   +𝑜 coa 7602   ·𝑜 comu 7603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610
This theorem is referenced by:  oeeui  7727  omxpenlem  8102
  Copyright terms: Public domain W3C validator