Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunltfirp Structured version   Visualization version   GIF version

Theorem omeiunltfirp 41054
Description: If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunltfirp.o (𝜑𝑂 ∈ OutMeas)
omeiunltfirp.x 𝑋 = dom 𝑂
omeiunltfirp.z 𝑍 = (ℤ𝑁)
omeiunltfirp.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
omeiunltfirp.re (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
omeiunltfirp.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
omeiunltfirp (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Distinct variable groups:   𝑛,𝐸,𝑧   𝑛,𝑂,𝑧   𝑛,𝑋   𝑧,𝑌   𝑛,𝑍,𝑧   𝜑,𝑛,𝑧
Allowed substitution hints:   𝑁(𝑧,𝑛)   𝑋(𝑧)   𝑌(𝑛)

Proof of Theorem omeiunltfirp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeiunltfirp.z . . . . . 6 𝑍 = (ℤ𝑁)
2 fvex 6239 . . . . . 6 (ℤ𝑁) ∈ V
31, 2eqeltri 2726 . . . . 5 𝑍 ∈ V
43a1i 11 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝑍 ∈ V)
5 omeiunltfirp.o . . . . . . . 8 (𝜑𝑂 ∈ OutMeas)
65adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
7 omeiunltfirp.x . . . . . . 7 𝑋 = dom 𝑂
8 omeiunltfirp.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
98ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
10 fvex 6239 . . . . . . . . 9 (𝐸𝑛) ∈ V
1110elpw 4197 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 ↔ (𝐸𝑛) ⊆ 𝑋)
129, 11sylib 208 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
136, 7, 12omecl 41038 . . . . . 6 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
14 eqid 2651 . . . . . 6 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
1513, 14fmptd 6425 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
1615adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
17 simpr 476 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
18 omeiunltfirp.re . . . . 5 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
1918adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
204, 16, 17, 19sge0pnffigt 40931 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
21 simpl 472 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)))
22 simpr 476 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
23 elpwinss 39530 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
2423resmptd 5487 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → ((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
2524fveq2d 6233 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2625adantr 480 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2722, 26breqtrd 4711 . . . . . . . 8 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2827adantll 750 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2918rexrd 10127 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
3029ad2antrr 762 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
31 simpr 476 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
325ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
338ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝐸:𝑍⟶𝒫 𝑋)
3423adantr 480 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
35 simpr 476 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
3634, 35sseldd 3637 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
3736adantll 750 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
3833, 37ffvelrnd 6400 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ∈ 𝒫 𝑋)
3938, 11sylib 208 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑋)
4032, 7, 39omecl 41038 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
41 eqid 2651 . . . . . . . . . . 11 (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))
4240, 41fmptd 6425 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,]+∞))
4331, 42sge0xrcl 40920 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
4443adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
45 elinel2 3833 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
4645adantl 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
47 rge0ssre 12318 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
48 0xr 10124 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4948a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ∈ ℝ*)
50 pnfxr 10130 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → +∞ ∈ ℝ*)
5232, 7, 39omexrcl 41042 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ*)
53 iccgelb 12268 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐸𝑛)))
5449, 51, 40, 53syl3anc 1366 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ≤ (𝑂‘(𝐸𝑛)))
5512ralrimiva 2995 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
56 iunss 4593 . . . . . . . . . . . . . . . . . 18 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5755, 56sylibr 224 . . . . . . . . . . . . . . . . 17 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5857ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5932, 7, 58omexrcl 41042 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
60 ssiun2 4595 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6137, 60syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6232, 7, 58, 61omessle 41033 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ≤ (𝑂 𝑛𝑍 (𝐸𝑛)))
6318ltpnfd 11993 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6463ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6552, 59, 51, 62, 64xrlelttrd 12029 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) < +∞)
6649, 51, 52, 54, 65elicod 12262 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
6747, 66sseldi 3634 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ)
6846, 67fsumrecl 14509 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) ∈ ℝ)
69 omeiunltfirp.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ+)
7069rpred 11910 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7170adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
7268, 71readdcld 10107 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
7372rexrd 10127 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
7473adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
75 simpr 476 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
7666, 41fmptd 6425 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,)+∞))
7746, 76sge0fsum 40922 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘))
78 eqidd 2652 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
79 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
8079fveq2d 6233 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
8180adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) ∧ 𝑛 = 𝑘) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
82 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝑧)
83 fvexd 6241 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑂‘(𝐸𝑘)) ∈ V)
8478, 81, 82, 83fvmptd 6327 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = (𝑂‘(𝐸𝑘)))
8584sumeq2dv 14477 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = Σ𝑘𝑧 (𝑂‘(𝐸𝑘)))
86 fveq2 6229 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
8786fveq2d 6233 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑂‘(𝐸𝑘)) = (𝑂‘(𝐸𝑛)))
8887cbvsumv 14470 . . . . . . . . . . . 12 Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛))
8988a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
9077, 85, 893eqtrd 2689 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
9169adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ+)
9268, 91ltaddrpd 11943 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9390, 92eqbrtrd 4707 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9493adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9530, 44, 74, 75, 94xrlttrd 12028 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9621, 28, 95syl2anc 694 . . . . . 6 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9796ex 449 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9897adantlr 751 . . . 4 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9998reximdva 3046 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
10020, 99mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
101 simpl 472 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝜑)
102 simpr 476 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
1033a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
104103, 15sge0repnf 40921 . . . . 5 (𝜑 → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
105104adantr 480 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
106102, 105mpbird 247 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
107 nfv 1883 . . . . . 6 𝑛𝜑
108 nfcv 2793 . . . . . . . 8 𝑛Σ^
109 nfmpt1 4780 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
110108, 109nffv 6236 . . . . . . 7 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
111 nfcv 2793 . . . . . . 7 𝑛
112110, 111nfel 2806 . . . . . 6 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ
113107, 112nfan 1868 . . . . 5 𝑛(𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
1143a1i 11 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑍 ∈ V)
11513adantlr 751 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
11669adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑌 ∈ ℝ+)
117 simpr 476 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
118113, 114, 115, 116, 117sge0ltfirpmpt 40943 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
11918ad3antrrr 766 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
120117ad2antrr 762 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
12172ad4ant13 1315 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
122 nfcv 2793 . . . . . . . . 9 𝑛𝐸
123107, 122, 5, 7, 1, 8omeiunle 41052 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
124123ad3antrrr 766 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
125 simpr 476 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
126 simpll 805 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝜑)
127 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
128127fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑚)))
129128cbvmptv 4783 . . . . . . . . . . . . . . 15 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))
130129fveq2i 6232 . . . . . . . . . . . . . 14 ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
131130eleq1i 2721 . . . . . . . . . . . . 13 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
132131biimpi 206 . . . . . . . . . . . 12 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
133132ad2antlr 763 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
134 simpr 476 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
13545adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
13666adantllr 755 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
137135, 136sge0fsummpt 40925 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
138126, 133, 134, 137syl21anc 1365 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
139138oveq1d 6705 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
140139adantr 480 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
141125, 140breqtrd 4711 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
142119, 120, 121, 124, 141lelttrd 10233 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
143142ex 449 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
144143reximdva 3046 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
145118, 144mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
146101, 106, 145syl2anc 694 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
147100, 146pm2.61dan 849 1 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468   ciun 4552   class class class wbr 4685  cmpt 4762  dom cdm 5143  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  cr 9973  0cc0 9974   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cuz 11725  +crp 11870  [,)cico 12215  [,]cicc 12216  Σcsu 14460  Σ^csumge0 40897  OutMeascome 41024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-sumge0 40898  df-ome 41025
This theorem is referenced by:  carageniuncllem2  41057
  Copyright terms: Public domain W3C validator