![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omedm | Structured version Visualization version GIF version |
Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omedm | ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isome 41214 | . . . 4 ⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥)))))) | |
2 | 1 | ibi 256 | . . 3 ⊢ (𝑂 ∈ OutMeas → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂∀𝑦 ∈ 𝒫 𝑥(𝑂‘𝑦) ≤ (𝑂‘𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂‘∪ 𝑥) ≤ (Σ^‘(𝑂 ↾ 𝑥))))) |
3 | 2 | simplld 808 | . 2 ⊢ (𝑂 ∈ OutMeas → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0)) |
4 | 3 | simplrd 810 | 1 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∅c0 4058 𝒫 cpw 4302 ∪ cuni 4588 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ωcom 7230 ≼ cdom 8119 0cc0 10128 +∞cpnf 10263 ≤ cle 10267 [,]cicc 12371 Σ^csumge0 41082 OutMeascome 41209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ome 41210 |
This theorem is referenced by: caragenss 41224 omeunile 41225 |
Copyright terms: Public domain | W3C validator |